A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach

被引:39
|
作者
Liu, Yu [1 ,2 ]
Xi, Du-Gang [3 ]
Li, Zhao-Liang [4 ,5 ]
Hong, Yang [6 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China
[3] PLA Informat Engn Univ, Zhengzhou 450001, Peoples R China
[4] Chinese Acad Agr Sci, Key Lab Agri Informat, Minist Agr, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[5] CNRS, UdS, ICube, F-67412 Illkirch Graffenstaden, France
[6] Tsinghua Univ, Dept Hydraul Engn, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Quantitative precipitation nowcasting; Pyramid Lucas-Kanade optical flow method; Pixel level; Fengyun-2F; CONTINENTAL RADAR IMAGES; SCALE-DEPENDENCE; TRACKING; PREDICTABILITY; FORECAST; IDENTIFICATION; ALGORITHM; SYSTEM;
D O I
10.1016/j.jhydrol.2015.07.042
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Short-term high-resolution Quantitative Precipitation Nowcasting (QPN) has important implications for navigation, flood forecasting, and other hydrological and meteorological concerns. This study proposes a new algorithm called Pixel-based QPN using the Pyramid Lucas-Kanade Optical Flow method (PPLK), which comprises three steps: employing a Pyramid Lucas-Kanade Optical Flow method (PLKOF) to estimate precipitation advection, projecting rainy clouds by considering the advection and evolution pixel by pixel, and interpolating QPN imagery based on the space-time continuum of cloud patches. The PPLK methodology was evaluated with 2338 images from the geostationary meteorological satellite Fengyun-2F (FY-2F) of China and compared with two other advection-based methods, i.e., the maximum correlation method and the Horn-Schunck Optical Flow scheme. The data sample covered all intensive observations since the launch of FY-2F, despite covering a total of only approximately 10 days. The results show that the PPLK performed better than the algorithms used for comparison, demonstrating less time expenditure, more effective cloud tracking, and improved QPN accuracy. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:354 / 364
页数:11
相关论文
共 25 条
  • [1] Subpixel-Based Precipitation Nowcasting with the Pyramid Lucas-Kanade Optical Flow Technique
    Li, Ling
    He, Zhengwei
    Chen, Sheng
    Mai, Xiongfa
    Zhang, Asi
    Hu, Baoqing
    Li, Zhi
    Tong, Xinhua
    ATMOSPHERE, 2018, 9 (07):
  • [2] Moving Target Detection and Tracking Based on Pyramid Lucas-Kanade Optical Flow
    Wang, Zhen
    Yang, Xiaojun
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 66 - 69
  • [3] Quantitative Precipitation Nowcasting: A Lagrangian Pixel-Based Approach
    Zahraei, Ali
    Hsu, Kuo-lin
    Sorooshian, Soroosh
    Gourley, J. J.
    Lakshmanan, Valliappa
    Hong, Yang
    Bellerby, Tim
    ATMOSPHERIC RESEARCH, 2012, 118 : 418 - 434
  • [4] Stationary Obstacle Detection Using Pyramidal Lucas Kanade Optical Flow
    Hatmaja, Sukra Bambang Wahyu Tri
    Nugroho, Saptadi
    Setyawan, Iwan
    2017 15TH INTERNATIONAL CONFERENCE ON QUALITY IN RESEARCH (QIR) - INTERNATIONAL SYMPOSIUM ON ELECTRICAL AND COMPUTER ENGINEERING, 2017, : 474 - 478
  • [5] Lucas-Kanade Optical Flow Based Camera Motion Estimation Approach
    Meng, Zelin
    Kong, Xiangbo
    Meng, Lin
    Tomiyama, Hiroyuki
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 77 - 78
  • [6] Sub-pixel Precipitation Nowcasting over Guangdong province using Optical Flow Algorithm
    Li, Ling
    Chen, Sheng
    Mai, Xiong-Fa
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4638 - 4641
  • [7] Large Displacement Detection Using Improved Lucas-Kanade Optical Flow
    Al-Qudah, Saleh
    Yang, Mijia
    SENSORS, 2023, 23 (06)
  • [8] Solving sub-pixel image registration problems using phase correlation and Lucas-Kanade optical flow method
    Douini, Youssef
    Riffi, Jamal
    Adnane Mahraz, Mohamed
    Tairi, Hamid
    2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV), 2017,
  • [9] THE APPLICATION OF PYRAMID LUCAS-KANADE OPTICAL FLOW METHOD FOR TRACKING RAIN MOTION USING HIGH-RESOLUTION RADAR IMAGES
    Hambali, Roby
    Legono, Djoko
    Jayadi, Rachmad
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2021, 83 (01): : 105 - 115
  • [10] Measurement of ocular torsion using iterative Lucas-Kanade optical flow method
    Lee, I. B.
    Park, K. S.
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 6433 - 6436