Gagliardo-Nirenberg inequalities and non-inequalities: The full story

被引:97
|
作者
Brezis, Haim [1 ,2 ]
Mironescu, Petru [3 ,4 ]
机构
[1] Rutgers State Univ, Dept Math, Hill Ctr,Busch Campus,110 Frelinghuysen Rd, Piscataway, NJ 08854 USA
[2] Technion Israel Inst Technol, Math Dept, IL-32000 Haifa, Israel
[3] Univ Lyon 1, Univ Lyon, CNRS UMR 5208, Inst Camille Jordan, 43 Blvd 11 Novembre 1918, F-69622 Villeurbanne, France
[4] Romanian Acad, Simion Stoilow Inst Math, Calea Grivitei 21, Bucharest 010702, Romania
基金
美国国家科学基金会;
关键词
Sobolev spaces; Gagliardo-Nirenberg inequalities; Interpolation inequalities;
D O I
10.1016/j.anihpc.2017.11.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the validity of the Gagliardo-Nirenberg type inequality vertical bar vertical bar f vertical bar vertical bar(s,p)(W)((Omega)) less than or similar to vertical bar vertical bar f vertical bar vertical bar(s1,p1)(theta)(W)((Omega))vertical bar vertical bar f vertical bar vertical bar(s2,p2)(1-theta)(W)((Omega)), (1) with Omega subset of R-N. Here, 0 <= s(1) <= s <= s(2) are non negative numbers (not necessarily integers), 1 <= p(1), p(2) <= infinity, and we assume the standard relations s = theta s(1) + (1 - theta)s(2), 1/p = theta/p(1) + (1 - theta)/p(2) for some theta is an element of(0, 1). By the seminal contributions of E. Gagliardo and L. Nirenberg, (1) holds when s(1), s(2), s are integers. It turns out that (1) holds for "most" of values of s(1),...,p(2), but not for all of them. We present an explicit condition on s(1), s(2), p(1), p(2) which allows to decide whether (1) holds or fails. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1355 / 1376
页数:22
相关论文
共 50 条