Twinning partial multiplication at grain boundary in nanocrystalline fcc metals

被引:124
|
作者
Zhu, Y. T. [1 ]
Wu, X. L. [4 ]
Liao, X. Z. [3 ]
Narayan, J. [1 ]
Mathaudhu, S. N. [2 ]
Kecskes, L. J. [2 ]
机构
[1] N Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27695 USA
[2] USA, Res Lab, Aberdeen Proving Ground, MD 21005 USA
[3] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[4] Chinese Acad Sci, Inst Mech, State Key Lab Nonlinear Mech, Beijing 100080, Peoples R China
关键词
deformation; dislocations; grain growth; grain size; nanostructured materials; twin boundaries; MOLECULAR-DYNAMICS SIMULATION; FORMATION MECHANISM; DEFORMATION-MECHANISM; AL; TWINS; ALUMINUM; COPPER; SLIP;
D O I
10.1063/1.3187539
中图分类号
O59 [应用物理学];
学科分类号
摘要
Most deformation twins in nanocrystalline face-centered cubic (fcc) metals have been observed to form from grain boundaries. The growth of such twins requires the emission of Shockley partials from the grain boundary on successive slip planes. However, it is statistically improbable for a partial to exist on every slip plane. Here we propose a dislocation reaction and cross-slip mechanism on the grain boundary that would supply a partial on every successive slip plane for twin growth. This mechanism can also produce a twin with macrostrain smaller than that caused by a conventional twin.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Twinning in nanocrystalline fcc metals
    Froseth, AG
    Derlet, PM
    Van Swygenhoven, H
    [J]. ADVANCED ENGINEERING MATERIALS, 2005, 7 (1-2) : 16 - 20
  • [2] Grain-boundary sliding in nanocrystalline fcc metals
    Van Swygenhoven, H
    Derlet, PA
    [J]. PHYSICAL REVIEW B, 2001, 64 (22)
  • [3] Grain-boundary sliding and separation in polycrystalline metals: application to nanocrystalline fcc metals
    Wei, YJ
    Anand, L
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (11) : 2587 - 2616
  • [4] Modelling the strongest grain size in nanocrystalline FCC metals
    Huang, Mingxin
    Bouaziz, Olivier
    van der Zwaag, Sybrand
    [J]. MATERIALS LETTERS, 2011, 65 (19-20) : 3128 - 3130
  • [5] Deformation by grain rotations in nanocrystalline fcc-metals
    Yagi, N.
    Rikukawa, A.
    Mizubayashi, H.
    Tanimoto, H.
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 442 (1-2): : 323 - 327
  • [6] Grain boundary and surface energies of fcc metals
    Udler, D
    Seidman, DN
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11133 - 11136
  • [7] Grain boundary energy function for fcc metals
    Bulatov, Vasily V.
    Reed, Bryan W.
    Kumar, Mukul
    [J]. ACTA MATERIALIA, 2014, 65 : 161 - 175
  • [8] Twinning in nanocrystalline metals
    Misra, Amit
    [J]. JOM, 2008, 60 (09) : 59 - 59
  • [9] Twinning in nanocrystalline metals
    Amit Misra
    [J]. JOM, 2008, 60 : 59 - 59
  • [10] A comparison of grain boundary evolution during grain growth in fcc metals
    Brons, J. G.
    Thompson, G. B.
    [J]. ACTA MATERIALIA, 2013, 61 (11) : 3936 - 3944