The use of data-driven ensemble approaches for the prediction of the solar Photovoltaic (PV) power production is promising due to their capability of handling the intermittent nature of the solar energy source. In this work, a comprehensive ensemble approach composed by optimized and diversified Artificial Neural Networks (ANNs) is proposed for improving the 24h-ahead solar PV power production predictions. The ANNs are optimized in terms of number of hidden neurons and diversified in terms of the diverse training datasets used to build the ANNs, by resorting to trial-and-error procedure and BAGGING techniques, respectively. In addition, the Bootstrap technique is embedded to the ensemble for quantifying the sources of uncertainty that affect the ensemble models' predictions in the form of Prediction Intervals (PIs). The effectiveness of the proposed ensemble approach is demonstrated by a real case study regarding a grid-connected solar PV system (231 kWac capacity) installed on the rooftop of the Faculty of Engineering at the Applied Science Private University (ASU), Amman, Jordan. The results show that the proposed approach outperforms three benchmark models, including smart persistence model and single optimized ANN model currently adopted by the PV system's owner for the prediction task, with a performance gain reaches up to 11%, 12%, and 9%, for RMSE, MAE, and WMAE standard performance metrics, respectively. Simultaneously, the proposed approach has shown superior in quantifying the uncertainty affecting the power predictions, by establishing slightly wider PIs that achieve the highest confidence level reaches up to 84% for a predefined confidence level of 80% compared to three other approaches of literature. These enhancements would, indeed, allow balancing power supplies and demands across centralized grid networks through economic dispatch decisions between the energy sources that contribute to the energy mix.