ON A FORMULA FOR THE REGULARIZED DETERMINANT OF ZETA FUNCTIONS WITH APPLICATION TO SOME DIRICHLET SERIES
被引:11
|
作者:
Hajli, Mounir
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan RD, Shanghai 200240, Peoples R ChinaShanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan RD, Shanghai 200240, Peoples R China
Hajli, Mounir
[1
]
机构:
[1] Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan RD, Shanghai 200240, Peoples R China
来源:
QUARTERLY JOURNAL OF MATHEMATICS
|
2020年
/
71卷
/
03期
关键词:
NEGATIVE INTEGER VALUES;
GROWTH;
D O I:
10.1093/qmathj/haaa006
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study a large class of zeta functions. We evaluate explicitly the special values of these zeta functions and the associated derivatives at . As an application, we recover several results on the zeta functions defined by two polynomials already obtained in the literature.