Clutter Removal in Ground-Penetrating Radar Images Using Deep Neural Networks

被引:3
|
作者
Sun, Hai-Han [1 ]
Cheng, Weixia [1 ]
Fan, Zheng [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore, Singapore
关键词
clutter removal; deep learning; ground-penetrating radar; deep convolutional neural network;
D O I
10.1109/ISAP53582.2022.9998650
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The clutter in ground-penetrating radar (GPR) images obscures and disguises subsurface target reflections, which greatly challenges the accurate target identification. Conventional clutter removal methods suffer from limited clutter removal capability. They either leave residual clutter or deteriorate target reflections. To address the challenges in suppressing clutter in GPR radargrams, we present a deep learning-based method that leverages the powerful learning capability of the deep neural network to remove clutter in diverse real-world scenarios. The network takes the raw GPR radargram as the input, preserves the information related to target reflections and eliminates unwanted clutter features in an encoder-decoder manner, and finally reconstructs the clutter-free radargram. Experimental results demonstrate that the well-trained network successfully removes clutter and restores target reflections with consistent high performance in various real-world scenarios.
引用
收藏
页码:17 / 18
页数:2
相关论文
共 50 条
  • [1] Clutter Removal in Ground-Penetrating Radar Images Using Morphological Component Analysis
    Temlioglu, Eyyup
    Erer, Isin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (12) : 1802 - 1806
  • [2] Suppressing ground penetrating radar clutter to predict root parameters using deep neural networks
    Li G.
    Ma J.
    Wang Z.
    Wei S.
    [J]. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (16): : 171 - 180
  • [3] The development of deep ground-penetrating radar
    Hata, N
    Masuda, J
    Takatsuka, T
    [J]. NTT REVIEW, 1997, 9 (04): : 105 - 108
  • [4] Ground Surface Scattering and Clutter Suppression in Ground-Penetrating Radar Applications
    Liao, DaHan
    [J]. 2012 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2012,
  • [5] Clutter Modeling for Ground-Penetrating Radar Measurements in Heterogeneous Soils
    Takahashi, Kazunori
    Igel, Jan
    Preetz, Holger
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2011, 4 (04) : 739 - 747
  • [6] Clutter Distributions for Tomographic Image Standardization in Ground-Penetrating Radar
    Worthmann, Brian M.
    Chambers, David H.
    Perlmutter, David S.
    Mast, Jeffrey E.
    Paglieroni, David W.
    Pechard, Christian T.
    Stevenson, Garrett A.
    Bond, Steven W.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7957 - 7967
  • [7] Object Detection in Ground-Penetrating Radar Images Using a Deep Convolutional Neural Network and Image Set Preparation by Migration
    Ishitsuka, Kazuya
    Iso, Shinichiro
    Onishi, Kyosuke
    Matsuoka, Toshifumi
    [J]. INTERNATIONAL JOURNAL OF GEOPHYSICS, 2018, 2018
  • [8] Ground-penetrating Radar Clutter Removal via 1D Fast Subband Decomposition
    Kumlu, Deniz
    Karasakal, Gokhan
    Kaplan, Nur Huseyin
    Erer, Isin
    [J]. DEFENCE SCIENCE JOURNAL, 2019, 69 (01) : 74 - 79
  • [9] Soil piping: networks characterization using ground-penetrating radar
    Got, J-B.
    Andre, P.
    Mertens, L.
    Bieders, C.
    Lambot, S.
    [J]. PROCEEDINGS OF THE 2014 15TH INTERNATIONAL CONFERENCE ON GROUND PENETRATING RADAR (GPR 2014), 2014, : 144 - 148
  • [10] Efficient Underground Target Detection of Urban Roads in Ground-Penetrating Radar Images Based on Neural Networks
    Xue, Wei
    Chen, Kehui
    Li, Ting
    Liu, Li
    Zhang, Jian
    [J]. REMOTE SENSING, 2023, 15 (05)