A FIC-based stabilized finite element formulation for turbulent flows

被引:7
|
作者
Cotela-Dalmau, Jordi [1 ]
Rossi, Riccardo
Onate, Eugenio
机构
[1] CIMNE, Campus Nord UPC,C Gran Capita Sn, Barcelona 08034, Spain
关键词
Finite Increment Calculus; Turbulence modeling; Stabilized finite elements; LARGE-EDDY SIMULATION; COMPUTATIONAL FLUID-DYNAMICS; DIRECT NUMERICAL-SIMULATION; INCOMPRESSIBLE FLOWS; CIRCULAR-CYLINDER; SCALE MODELS; CALCULUS; APPROXIMATION; DISSIPATION;
D O I
10.1016/j.cma.2016.11.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a new stabilized finite element (FEM) formulation for incompressible flows based on the Finite Increment Calculus (FIC) framework (Orate, 1998). In comparison to existing FIC approaches for fluids, this formulation involves a new term in the momentum equation, which introduces non-isotropic dissipation in the direction of velocity gradients. We also follow a new approach to the derivation of the stabilized mass equation, inspired by recent developments for quasi-incompressible flows Pilate et al., 2014). The presented FIC-FEM formulation is used to simulate turbulent flows, using the dissipation introduced by the method to account for turbulent dissipation in the style of implicit large eddy simulation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:607 / 631
页数:25
相关论文
共 50 条
  • [1] A FIC-based stabilized mixed finite element method with equal order interpolation for solid-pore fluid interaction problems
    de-Pouplana, Ignasi
    Onate, Eugenio
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2017, 41 (01) : 110 - 134
  • [2] Stabilized finite element formulation of buoyancy driven incompressible flows
    Aliabadi, S
    Abatan, A
    Johnson, A
    Abedi, J
    Yeboah, Y
    Bota, K
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (05): : 315 - 324
  • [3] STABILIZED FINITE ELEMENT FORMULATION WITH DOMAIN DECOMPOSITION FOR INCOMPRESSIBLE FLOWS
    Becker, Roland
    Capatina, Daniela
    Luce, Robert
    Trujillo, David
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (03): : A1270 - A1296
  • [4] Computation of turbulent flows using a finite calculus-finite element formulation
    Onate, E.
    Valls, A.
    Garcia, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 54 (6-8) : 609 - 637
  • [5] A stabilized finite element formulation to solve high and low speed flows
    Costa, Gustavo K.
    Lyra, Paulo R. M.
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (05): : 411 - 419
  • [6] An edge based stabilized finite element method for solving compressible flows: formulation and parallel implementation
    Soulaimani, A
    Saad, Y
    Rebaine, A
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (49-50) : 6735 - 6761
  • [7] S-PAL: A stabilized finite element formulation for computing viscoplastic flows
    Moschopoulos, P.
    Varchanis, S.
    Syrakos, A.
    Dimakopoulos, Y.
    Tsamopoulos, J.
    [J]. JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2022, 309
  • [8] A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation
    Oñate, E
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (3-4) : 355 - 370
  • [9] Finite element computation of turbulent flows
    Larock, B. E.
    Schamber, D. R.
    [J]. ADVANCES IN WATER RESOURCES, 1981, 4 (04) : 191 - 197
  • [10] Direct numerical simulation of turbulent channel flows using a stabilized finite element method
    Trofimova, Alisa V.
    Tejada-Martinez, Andres E.
    Jansen, Kenneth E.
    Lahey, Richard T., Jr.
    [J]. COMPUTERS & FLUIDS, 2009, 38 (04) : 924 - 938