ON THE GEOMETRIC DEPENDENCE OF RIEMANNIAN SOBOLEV BEST CONSTANTS

被引:2
|
作者
Barbosa, Ezequiel R. [1 ]
Montenegro, Marcos [1 ]
机构
[1] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
关键词
sharp Sobolev inequalities; extremal functions; compactness; unifomity problem; ISOPERIMETRIC-INEQUALITIES; COMPACT MANIFOLDS;
D O I
10.3934/cpaa.2009.8.1759
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We concerns here with the continuity on the geometry of the second Riemannian L(p)-Sobolev best constant B(0)(p, g) associated to the AB program. Precisely, for 1 <= p <= 2, we prove that B(0)(p, g) depends continuously on g in the C(2)-topology. Moreover, this topology is sharp for p = 2. From this discussion, we deduce some existence and C(0)-compactness results on extremal functions.
引用
收藏
页码:1759 / 1777
页数:19
相关论文
共 50 条