On the satisfiability threshold of formulas with three literals per clause

被引:24
|
作者
Diaz, J. [1 ]
Kirousis, L. [2 ,3 ]
Mitsche, D. [1 ]
Perez-Gimenez, X. [1 ]
机构
[1] UPC, Barcelona 08034, Spain
[2] RA Comp Technol Inst, GR-26504 Rion, Greece
[3] Univ Patras, GR-26504 Rion, Greece
关键词
PROBABILISTIC ANALYSIS; SAT; BOUNDS;
D O I
10.1016/j.tcs.2009.02.020
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we present a new upper bound for randomly chosen 3-CNF formulas. In particular we show that any random formula over n variables, with a clauses-to-variables ratio of at least 4.4898 is, as n grows large, asymptotically almost surely unsatisfiable. The previous best such bound, due to Dubois in 1999, was 4.506. The first such bound, independently discovered by many groups of researchers since 1983, was 5.19. Several decreasing values between 5.19 and 4.506 were published in the years between. We believe that the probabilistic techniques we use for the proof are of independent interest. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2920 / 2934
页数:15
相关论文
共 50 条
  • [1] Satisfiability threshold for random XOR-CNF formulas
    Creignou, Nadia
    Daude, Herve
    [J]. Discrete Applied Mathematics, 1999, 96-97 : 41 - 53
  • [2] Satisfiability threshold for random XOR-CNF formulas
    Creignou, N
    Daude, H
    [J]. DISCRETE APPLIED MATHEMATICS, 1999, 97 : 41 - 53
  • [3] Approximating the satisfiability threshold for random k-XOR-formulas
    Creignou, N
    Daudé, H
    Dubois, O
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (02): : 113 - 126
  • [4] On the satisfiability threshold and clustering of solutions of random 3-SAT formulas
    Maneva, Elitza
    Sinclair, Alistair
    [J]. THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) : 359 - 369
  • [5] Satisfiability of bright formulas
    Denisov A.S.
    [J]. Ukrainian Mathematical Journal, 2007, 59 (10) : 1606 - 1610
  • [6] Clause tableaux for maximum and minimum satisfiability
    Argelich, Josep
    Li, Chu Min
    Manya, Felip
    Soler, Joan Ramon
    [J]. LOGIC JOURNAL OF THE IGPL, 2021, 29 (01) : 7 - 27
  • [7] Clause Redundancy and Preprocessing in Maximum Satisfiability
    Ihalainen, Hannes
    Berg, Jeremias
    Jarvisalo, Matti
    [J]. AUTOMATED REASONING, IJCAR 2022, 2022, 13385 : 75 - 94
  • [8] Two, three and four noun phrases per clause in Meskwaki
    Thomason, L
    [J]. Papers Of The Thirty-Fifth Algonquian Conference, 2004, 35 : 407 - 430
  • [9] Algorithms for Testing Satisfiability Formulas
    Marin Vlada
    [J]. Artificial Intelligence Review, 2001, 15 : 153 - 163
  • [10] On the maximum satisfiability of random formulas
    Achlioptas, Dimitris
    Naor, Assaf
    Peres, Yuval
    [J]. JOURNAL OF THE ACM, 2007, 54 (02)