Nonlinear Evolution of the Whistler Heat Flux Instability

被引:39
|
作者
Kuzichev, Ilya, V [1 ,2 ]
Vasko, Ivan Y. [2 ,3 ]
Soto-Chavez, Angel Rualdo [1 ]
Tong, Yuguang [3 ,4 ]
Artemyev, Anton, V [2 ,5 ]
Bale, Stuart D. [3 ,4 ]
Spitkovsky, Anatoly [6 ]
机构
[1] New Jersey Inst Technol, Newark, NJ 07102 USA
[2] Russian Acad Sci, Space Res Inst, Moscow 117997, Russia
[3] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[5] Univ Calif Los Angeles, Inst Geophys & Planetary Phys, Los Angeles, CA 90065 USA
[6] Princeton Univ, Dept Astrophys Sci, Princeton, NJ 08544 USA
来源
ASTROPHYSICAL JOURNAL | 2019年 / 882卷 / 02期
基金
美国国家科学基金会;
关键词
instabilities; plasmas; solar wind; waves; SOLAR-WIND; COOLING FLOWS; WAVES; CONSTRAINTS; CLUSTERS;
D O I
10.3847/1538-4357/ab3290
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use the one-dimensional TRISTAN-MP particle-in-cell code to model the nonlinear evolution of the whistler heat flux instability (WHFI) that was proposed by Gary et al. and Gary & Li to regulate the electron heat flux in the solar wind and astrophysical plasmas. The simulations are initialized with electron velocity distribution functions typical for the solar wind. We perform a set of simulations at various initial values of the electron heat flux and beta(e). The simulations show that parallel whistler waves produced by the WHFI saturate at amplitudes consistent with the spacecraft measurements. The simulations also reproduce the correlations of the saturated whistler wave amplitude with the electron heat flux and beta(e) revealed in the spacecraft measurements. The major result is that parallel whistler waves produced by the WHFI do not significantly suppress the electron heat flux. The presented simulations indicate that coherent parallel whistler waves observed in the solar wind are unlikely to regulate the heat flux of solar wind electrons.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Whistler heat flux instability at high beta
    Gary, SP
    Li, H
    [J]. ASTROPHYSICAL JOURNAL, 2000, 529 (02): : 1131 - 1135
  • [2] NONLINEAR EVOLUTION OF WHISTLER WAVE MODULATIONAL INSTABILITY
    KARPMAN, VI
    LYNOV, JP
    MICHELSEN, PK
    RASMUSSEN, JJ
    [J]. PHYSICS OF PLASMAS, 1995, 2 (09) : 3302 - 3319
  • [3] NONLINEAR EVOLUTION OF THE MODULATIONAL INSTABILITY OF WHISTLER WAVES
    KARPMAN, VI
    HANSEN, FR
    HULD, T
    LYNOV, JP
    PECSELI, HL
    RASMUSSEN, JJ
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (08) : 890 - 893
  • [4] WHISTLER HEAT-FLUX INSTABILITY AND HEAT-FLUX REGULATION IN SOLAR-WIND
    GARY, SP
    FELDMAN, WC
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (09): : 1167 - 1167
  • [5] SOLAR-WIND HEAT-FLUX REGULATION BY WHISTLER INSTABILITY
    GARY, SP
    FELDMAN, WC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1977, 82 (07): : 1087 - 1094
  • [6] NONLINEAR INSTABILITY OF WHISTLER WAVE
    HASEGAWA, A
    [J]. TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1970, 51 (11): : 804 - &
  • [7] THE WHISTLER HEAT-FLUX INSTABILITY - THRESHOLD CONDITIONS IN THE SOLAR-WIND
    GARY, SP
    SCIME, EE
    PHILLIPS, JL
    FELDMAN, WC
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1994, 99 (A12) : 23391 - 23399
  • [8] Quasi-linear approach of the whistler heat-flux instability in the solar wind
    Shaaban, S. M.
    Lazar, M.
    Yoon, P. H.
    Poedts, S.
    Lopez, R. A.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 486 (04) : 4498 - 4507
  • [9] The nonlinear evolution of whistler-mode chorus: modulation instability as the source of tones
    Ratliff, Daniel J.
    Allanson, Oliver
    [J]. JOURNAL OF PLASMA PHYSICS, 2023, 89 (06)
  • [10] NONLINEAR EVOLUTION OF WHISTLER INSTABILITIES
    OSSAKOW, SL
    OTT, E
    HABER, I
    [J]. PHYSICS OF FLUIDS, 1972, 15 (12) : 2314 - 2326