BLOWUP AND EXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR PARABOLIC EQUATIONS WITH DEGENERATE DIFFUSION

被引:0
|
作者
Zhang, Zhengce [1 ]
Li, Yan [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Degenerate parabolic equation; L-infinity blowup; gradient blowup; global solution; comparison principle; GRADIENT BLOWUP; HEAT-EQUATION; P-LAPLACIAN; NONEXISTENCE; CONVERGENCE; BOUNDARY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the degenerate parabolic equation u(t) - div(vertical bar del u vertical bar(p-2)del u) = lambda u(m) + mu vertical bar del u vertical bar(q) on a smoothly bounded domain Omega subset of R-N (N >= 2), with homogeneous Dirichlet boundary conditions. The values of p > 2, q; m; lambda and mu will vary in different circumstances, and the solutions will have different behaviors. Our main goal is to present the sufficient conditions for L-infinity blowup, for gradient blowup, and for the existence of global solutions. A general comparison principle is also established.
引用
收藏
页数:17
相关论文
共 50 条