Branchwidth of chordal graphs

被引:1
|
作者
Paul, Christophe [1 ]
Telle, Jan Arne [2 ]
机构
[1] LIRMM, CNRS, F-34392 Montpellier 2, France
[2] Univ Bergen, Dept Informat, N-5020 Bergen, Norway
关键词
Graph decomposition; Width parameter; Algorithms; Graphs classes; ALGORITHMS;
D O I
10.1016/j.dam.2008.08.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper revisits the 'branchwidth territories' of Kloks, Kratochvil and Muller IT. Kloks, J. Kratochvil, H. Muller, New branchwidth territories, in: 16th Ann. Symp. on Theoretical Aspect of Computer Science, STACS, in: Lecture Notes in Computer Science, vol. 1563, 1999, pp. 173-183] to provide a simpler proof. and a faster algorithm for computing the branchwidth of an interval graph. We also generalize the algorithm to the class of chordal graphs, albeit at the expense of exponential running time. Compliance with the ternary constraint of the branchwidth definition is facilitated by a simple new tool called k-troikas: three sets of size at most k each are a k-troika of set S, if any two have union S. We give a straightforward O(m + n + q(2)) algorithm, computing branchwidth for an interval graph on m edges, n vertices and q maximal cliques. We also prove a conjecture of Mazoit I F Mazoit, A general scheme for deciding the branchwidth, Technical Report RR2004-34, LIP - Ecole Normale Superieure de Lyon, 2004. http://www.enslyon.fr/LIP/Pub/Rapports/RR/RR2004/RR2004-34.pdf], by showing that branchwidth can be computed in polynomial time for a chordal graph given with a clique tree having a polynomial number of subtrees. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:2718 / 2725
页数:8
相关论文
共 50 条
  • [1] Generation of graphs with bounded branchwidth
    Paul, Christophe
    Proskurowski, Andrzej
    Telle, Jan Arne
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2006, 4271 : 205 - +
  • [2] Graphs with branchwidth at most three
    Bodlaender, HL
    Thilikos, DM
    [J]. JOURNAL OF ALGORITHMS, 1999, 32 (02) : 167 - 194
  • [3] Graphs with Branchwidth at Most Three
    Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, Netherlands
    不详
    [J]. J Algorithms, 2 (167-194):
  • [4] The branchwidth of graphs and their cycle matroids
    Hicks, Illya V.
    McMurray, Nolan B., Jr.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (05) : 681 - 692
  • [5] Computing the branchwidth of interval graphs
    Kloks, T
    Kratochvíl, J
    Müller, H
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 145 (02) : 266 - 275
  • [6] Chordal Graphs
    Arneson, Broderick
    Rudnicki, Piotr
    [J]. FORMALIZED MATHEMATICS, 2006, 14 (03): : 79 - 92
  • [7] Graphs, branchwidth, and tangles! Oh my!
    Hicks, YV
    [J]. NETWORKS, 2005, 45 (02) : 55 - 60
  • [8] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Marthe Bonamy
    Matthew Johnson
    Ioannis Lignos
    Viresh Patel
    Daniël Paulusma
    [J]. Journal of Combinatorial Optimization, 2014, 27 : 132 - 143
  • [9] Chordal multipartite graphs and chordal colorings
    McKee, Terry A.
    [J]. DISCRETE MATHEMATICS, 2007, 307 (17-18) : 2309 - 2314
  • [10] Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs
    Bonamy, Marthe
    Johnson, Matthew
    Lignos, Ioannis
    Patel, Viresh
    Paulusma, Daniel
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (01) : 132 - 143