Nonlinear terahertz superconducting plasmonics

被引:17
|
作者
Wu, Jingbo [1 ]
Zhang, Caihong [2 ]
Liang, Lanju [1 ]
Jin, Biaobing [1 ]
Kawayama, Iwao [2 ]
Murakami, Hironaru [2 ]
Kang, Lin [1 ]
Xu, Weiwei [1 ]
Wang, Huabing [1 ,3 ]
Chen, Jian [1 ]
Tonouchi, Masayoshi [2 ]
Wu, Peiheng [1 ]
机构
[1] Nanjing Univ, Res Inst Superconductor Elect RISE, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[2] Osaka Univ, Inst Laser Engn, Suita, Osaka 5650871, Japan
[3] Natl Inst Mat Sci, Tsukuba, Ibaraki 3050047, Japan
关键词
ENHANCED RAMAN-SCATTERING; HOLE ARRAY; PULSE; TRANSMISSION; GENERATION; FIELD; METAMATERIALS; EXCITATION; LIGHT;
D O I
10.1063/1.4898818
中图分类号
O59 [应用物理学];
学科分类号
摘要
Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Terahertz superconducting plasmonics and metamaterials
    Singh, Ranjan
    Tian, Zhen
    Gu, Jianqiang
    Cao, Wei
    Han, Jiaguang
    Wu, Judy
    Xing, Qirong
    He, Mingxia
    Zhang, Jingwen W.
    Zhang, Weili
    [J]. 2011 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2011,
  • [2] Low-loss terahertz superconducting plasmonics
    Tsiatmas, Anagnostis
    Fedotov, Vassili A.
    Javier Garcia de Abajo, F.
    Zheludev, Nikolay I.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [3] Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime
    Kim, Joon-Yeon
    Kang, Bong Joo
    Park, Joohyun
    Bahk, Young-Mi
    Kim, Won Tae
    Rhie, Jiyeah
    Jeon, Hyeongtag
    Rotermund, Fabian
    Kim, Dai-Sik
    [J]. NANO LETTERS, 2015, 15 (10) : 6683 - 6688
  • [4] Terahertz nonlinear superconducting metamaterials
    Zhang, Caihong
    Jin, Biaobing
    Han, Jiaguang
    Kawayama, Iwao
    Murakami, Hironaru
    Wu, Jingbo
    Kang, Lin
    Chen, Jian
    Wu, Peiheng
    Tonouchi, Masayoshi
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (08)
  • [5] Terahertz Plasmonics
    Otsuji, Taiichi
    Shur, Michael
    [J]. IEEE MICROWAVE MAGAZINE, 2014, 15 (07) : 43 - 50
  • [6] Terahertz plasmonics
    Yu, N.
    Wang, Q. J.
    Kats, M. A.
    Fan, J. A.
    Capasso, F.
    Khanna, S. P.
    Li, L.
    Davies, A. G.
    Linfield, E. H.
    [J]. ELECTRONICS LETTERS, 2010, 46 (26) : S52 - S57
  • [7] Focus on terahertz plasmonics
    Rahm, Marco
    Nahata, Ajay
    Akalin, Tahsin
    Beruete, Miguel
    Sorolla, Mario
    [J]. NEW JOURNAL OF PHYSICS, 2015, 17
  • [8] Frontiers in terahertz sources and plasmonics
    Daniel M. Mittleman
    [J]. Nature Photonics, 2013, 7 : 666 - 669
  • [9] Progress in terahertz surface plasmonics
    Wang Yue
    Wang Xuan
    He Xun-Jun
    Mei Jin-Shuo
    Chen Ming-Hua
    Yin Jing-Hua
    Lei Qing-Quan
    [J]. ACTA PHYSICA SINICA, 2012, 61 (13)
  • [10] Terahertz metadevices for silicon plasmonics
    Liang, Yuan
    Yu, Hao
    Wang, Hong
    Zhang, Hao Chi
    Cui, Tie Jun
    [J]. CHIP, 2022, 1 (04):