State-constrained optimal control of nonlinear elliptic variational inequalities

被引:1
|
作者
Serovajsky, S. [1 ]
机构
[1] Al Farabi Kazakh Natl Univ, Alma Ata 050078, Kazakhstan
关键词
Optimal control; Variational inequality; State constraints; Penalty method; OBSTACLE;
D O I
10.1007/s11590-013-0700-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
An optimization control problem for systems described by abstract variational inequalities with state constraints is considered. The solvability of this problem is proved. The problem is approximated by the penalty method. The convergence of this method is proved. Necessary conditions of optimality for the approximation problem are obtained. Its solution is an approximate optimal control of the initial problem.
引用
收藏
页码:2041 / 2051
页数:11
相关论文
共 50 条
  • [1] State-constrained optimal control of nonlinear elliptic variational inequalities
    S. Serovajsky
    [J]. Optimization Letters, 2014, 8 : 2041 - 2051
  • [2] AN EXTENSION OF PONTRYAGINS PRINCIPLE FOR STATE-CONSTRAINED OPTIMAL-CONTROL OF SEMILINEAR ELLIPTIC-EQUATIONS AND VARIATIONAL-INEQUALITIES
    BONNANS, F
    CASAS, E
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (01) : 274 - 298
  • [3] UNIQUENESS CRITERIA FOR THE ADJOINT EQUATION IN STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL
    Meyer, Christian
    Panizzi, Lucia
    Schiela, Anton
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2011, 32 (09) : 983 - 1007
  • [4] An Efficient Nonmonotone Method for State-Constrained Elliptic Optimal Control Problems
    Omid Solaymani Fard
    Farhad Sarani
    Hadi Nosratipour
    [J]. Bulletin of the Iranian Mathematical Society, 2020, 46 : 943 - 963
  • [5] OPTIMAL-CONTROL OF STATE-CONSTRAINED UNSTABLE SYSTEMS OF ELLIPTIC TYPE
    BONNANS, JF
    CASAS, E
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1989, 114 : 84 - 91
  • [6] An Efficient Nonmonotone Method for State-Constrained Elliptic Optimal Control Problems
    Fard, Omid Solaymani
    Sarani, Farhad
    Nosratipour, Hadi
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2020, 46 (04) : 943 - 963
  • [7] A PRIORI ERROR ESTIMATES FOR A STATE-CONSTRAINED ELLIPTIC OPTIMAL CONTROL PROBLEM
    Roesch, Arnd
    Steinig, Simeon
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 1107 - 1120
  • [8] Recent Advances in the Analysis of State-constrained Elliptic Optimal Control Problems
    Casas, Eduardo
    Troeltzsch, Fredi
    [J]. OPTIMAL CONTROL OF COUPLED SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 158 : 57 - +
  • [9] Optimal control of elliptic variational inequalities
    Ito, K
    Kunisch, K
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (03): : 343 - 364
  • [10] Optimal Control of Elliptic Variational Inequalities
    K. Ito
    K. Kunisch
    [J]. Applied Mathematics and Optimization, 2000, 41 : 343 - 364