The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex

被引:18
|
作者
Leibo, Joel Z. [1 ,2 ]
Liao, Qianli [1 ,2 ]
Anselmi, Fabio [1 ,2 ,3 ]
Poggio, Tomaso [1 ,2 ,3 ]
机构
[1] MIT, Ctr Brains Minds & Machines, Cambridge, MA 02139 USA
[2] MIT, McGovern Inst Brain Res, Cambridge, MA 02139 USA
[3] Ist Italiano Tecnol, Genoa, Italy
基金
美国国家科学基金会;
关键词
OBJECT RECOGNITION; FACE AREA; REPRESENTATION; ORGANIZATION; VIEWPOINT; NETWORK; INFORMATION; FUSIFORM; BRAIN; WORDS;
D O I
10.1371/journal.pcbi.1004390
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system's optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] The Cytoarchitecture of Domain-specific Regions in Human High-level Visual Cortex
    Weiner, Kevin S.
    Barnett, Michael A.
    Lorenz, Simon
    Caspers, Julian
    Stigliani, Anthony
    Amunts, Katrin
    Zilles, Karl
    Fischl, Bruce
    Grill-Spector, Kalanit
    [J]. CEREBRAL CORTEX, 2017, 27 (01) : 146 - 161
  • [2] A Test of the Domain-Specific Acculturation Strategy Hypothesis
    Miller, Matthew J.
    Yang, Minji
    Lim, Robert H.
    Hui, Kayi
    Choi, Na-Yeun
    Fan, Xiaoyan
    Lin, Li-Ling
    Grome, Rebekah E.
    Farrell, Jerome A.
    Blackmon, Sha'kema
    [J]. CULTURAL DIVERSITY & ETHNIC MINORITY PSYCHOLOGY, 2013, 19 (01): : 1 - 12
  • [3] A domain-specific visual language for domain model evolution
    Sprinkle, J
    Karsai, G
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2004, 15 (3-4): : 291 - 307
  • [4] Domain-specific modeling with visual languages - Preface
    Gray, J
    Rossi, M
    Tolvanen, JP
    [J]. JOURNAL OF VISUAL LANGUAGES AND COMPUTING, 2004, 15 (3-4): : 207 - 209
  • [5] Domain-specific compartmentalisation of working memory in prefrontal cortex
    Crewther, DP
    Panayiotou, A
    Abbott, D
    Crewther, SG
    [J]. AUSTRALIAN JOURNAL OF PSYCHOLOGY, 2005, 57 : 50 - 50
  • [6] Local gauge invariance implies Siegert's hypothesis
    Naus, HWL
    [J]. PHYSICAL REVIEW C, 1997, 55 (03): : 1580 - 1582
  • [7] Measurement invariance of the Domain-Specific Risk-Taking (DOSPERT) scale
    Welindt, Dillon
    Condon, David M.
    Weston, Sara J.
    [J]. JOURNAL OF BEHAVIORAL DECISION MAKING, 2023, 36 (04)
  • [8] Domain-Specific Model Differencing in Visual Concrete Syntax
    Zadahmad, Manouchehr
    Syriani, Eugene
    Alam, Omar
    Guerra, Esther
    de Lara, Juan
    [J]. PROCEEDINGS OF THE 12TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON SOFTWARE LANGUAGE ENGINEERING (SLE '19), 2019, : 100 - 112
  • [9] Domain-specific codesign for automated visual inspection systems
    Cuenca, S
    Cámara, A
    Suardíaz, J
    Toledo, A
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS, PT 1, PROCEEDINGS, 2005, 3522 : 683 - 690
  • [10] Domain-specific model differencing for graphical domain-specific languages
    Jafarlou, Manouchehr Zadahmad
    [J]. ACM/IEEE 25TH INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS, MODELS 2022 COMPANION, 2022, : 205 - 208