An efficient multivariate threshold ring signature scheme

被引:10
|
作者
Duong, Dung H. [1 ]
Tran, Ha T. N. [2 ]
Susilo, Willy [1 ]
Le Van Luyen [3 ]
机构
[1] Univ Wollongong, Sch Comp & Informat Technol, Inst Cybersecur & Cryptol, Northfields Ave, Wollongong, NSW 2522, Australia
[2] Concordia Univ Edmonton, Dept Math & Phys Sci, 7128 Ada Blvd NW, Edmonton, AB T5H 1M5, Canada
[3] Univ Sci, Fac Math & Comp Sci, VNU HCMC, 227 Nguyen Van Cu,Dist 5, Ho Chi Minh City, Vietnam
基金
澳大利亚研究理事会;
关键词
Post-quantum cryptography; Multivariate cryptography; Threshold ring signature; MQ problem; IDENTIFICATION;
D O I
10.1016/j.csi.2020.103489
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
At CRYPTO 2011, Sakumoto et al. introduced the first 3-pass identification protocol with security reduction to the MQ problem and impersonation probability 2/3. Petzoldt et al. (AAECC 2013) extended that protocol into a threshold ring signature scheme, which later was improved by Zhang and Zhao (NSS 2014). In 2015, Monteiro et al. (IEICE 2015) improved the 3-pass identification protocol of Sakumoto et al. to the one with impersonation probability 1/2. In this paper, we utilize the previous methods and the protocol by Monteiro et al. (2015)[20] to propose an efficient threshold ring signature. As a result, our scheme is more efficient than all previous multivariate threshold signature schemes in terms of both communication cost and signature length. In particular, the signature length of our scheme is 40% and 22% shorter than that of Petzoldt et al. and Zhang-Zhao respectively.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A multivariate based threshold ring signature scheme
    Petzoldt, Albrecht
    Bulygin, Stanislav
    Buchmann, Johannes
    [J]. APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (3-4) : 255 - 275
  • [2] A multivariate based threshold ring signature scheme
    Albrecht Petzoldt
    Stanislav Bulygin
    Johannes Buchmann
    [J]. Applicable Algebra in Engineering, Communication and Computing, 2013, 24 : 255 - 275
  • [3] A New Multivariate Based Threshold Ring Signature Scheme
    Zhang, Jingwan
    Zhao, Yiming
    [J]. NETWORK AND SYSTEM SECURITY, 2014, 8792 : 526 - 533
  • [4] RingRainbow - An Efficient Multivariate Ring Signature Scheme
    Mohamed, Mohamed Saied Emam
    Petzoldt, Albrecht
    [J]. PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2017, 2017, 10239 : 3 - 20
  • [5] An efficient code-based threshold ring signature scheme
    Assidi, Hafsa
    Ayebie, Edoukou Berenger
    Souidi, El Mamoun
    [J]. JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2019, 45 : 52 - 60
  • [6] Efficient ID-based Threshold Ring Signature scheme
    Jiang Han
    Xu QiuLiang
    Chen Guohua
    [J]. EUC 2008: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING, VOL 2, WORKSHOPS, 2008, : 437 - 442
  • [7] An Efficient Threshold Signature Scheme
    Zhang Chengli
    Tang Chunming
    [J]. 2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 1, 2011, : 85 - 87
  • [8] Efficient Threshold Signature Scheme
    Aboud, Sattar J.
    AL-Fayoumi, Mohammad
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2012, 3 (01) : 112 - 116
  • [9] A Multivariate Blind Ring Signature Scheme
    Dung Hoang Duong
    Susilo, Willy
    Ha Thanh Nguyen Tran
    [J]. COMPUTER JOURNAL, 2020, 63 (08): : 1194 - 1202
  • [10] A New Efficient Threshold Ring Signature Scheme Based on Coding Theory
    Melchor, Carlos Aguilar
    Cayrel, Pierre-Louis
    Gaborit, Philippe
    Laguillaumie, Fabien
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) : 4833 - 4842