Instrumental variable with competing risk model

被引:12
|
作者
Zheng, Cheng [1 ]
Dai, Ran [2 ]
Hari, Parameswaran N. [3 ]
Zhang, Mei-Jie [4 ]
机构
[1] Univ Wisconsin, Joseph J Zilber Sch Publ Hlth, Milwaukee, WI 53201 USA
[2] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[3] Med Coll Wisconsin, Div Hematol & Oncol, Milwaukee, WI 53226 USA
[4] Med Coll Wisconsin, Div Biostat, Milwaukee, WI 53226 USA
关键词
additive hazard model; competing risk; instrumental variable; survival analysis; HAZARDS REGRESSION-MODEL; GENERALIZED-METHOD; SUBDISTRIBUTION; IDENTIFICATION;
D O I
10.1002/sim.7205
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we discuss causal inference on the efficacy of a treatment or medication on a time-to-event outcome with competing risks. Although the treatment group can be randomized, there can be confoundings between the compliance and the outcome. Unmeasured confoundings may exist even after adjustment for measured covariates. Instrumental variable methods are commonly used to yield consistent estimations of causal parameters in the presence of unmeasured confoundings. On the basis of a semiparametric additive hazard model for the subdistribution hazard, we propose an instrumental variable estimator to yield consistent estimation of efficacy in the presence of unmeasured confoundings for competing risk settings. We derived the asymptotic properties for the proposed estimator. The estimator is shown to be well performed under finite sample size according to simulation results. We applied our method to a real transplant data example and showed that the unmeasured confoundings lead to significant bias in the estimation of the effect (about 50% attenuated). Copyright (C) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:1240 / 1255
页数:16
相关论文
共 50 条
  • [1] Instrumental variables estimation with competing risk data
    Martinussen, Torben
    Vansteelandt, Stijn
    [J]. BIOSTATISTICS, 2020, 21 (01) : 158 - 171
  • [2] Nonparametric binary instrumental variable analysis of competing risks data
    Richardson, Amy
    Hudgens, Michael G.
    Fine, Jason P.
    Brookhart, M. Alan
    [J]. BIOSTATISTICS, 2017, 18 (01) : 48 - 61
  • [3] Instrumental variable estimation of a threshold model
    Caner, M
    Hansen, BE
    [J]. ECONOMETRIC THEORY, 2004, 20 (05) : 813 - 843
  • [4] Bayesian model averaging in the instrumental variable regression model
    Koop, Gary
    Leon-Gonzalez, Roberto
    Strachan, Rodney
    [J]. JOURNAL OF ECONOMETRICS, 2012, 171 (02) : 237 - 250
  • [5] Likelihood analysis of the binary instrumental variable model
    Ramsahai, R. R.
    Lauritzen, S. L.
    [J]. BIOMETRIKA, 2011, 98 (04) : 987 - 994
  • [6] Measurement errors in the binary instrumental variable model
    Jiang, Zhichao
    Ding, Peng
    [J]. BIOMETRIKA, 2020, 107 (01) : 238 - 245
  • [7] AN INSTRUMENTAL VARIABLE METHOD FOR MODEL ORDER IDENTIFICATION
    YOUNG, P
    JAKEMAN, A
    MCMURTRIE, R
    [J]. AUTOMATICA, 1980, 16 (03) : 281 - 294
  • [8] INSTRUMENTAL VARIABLE ESTIMATION OF A CHARACTERISTICS MODEL OF DEMAND
    PUDNEY, SE
    [J]. REVIEW OF ECONOMIC STUDIES, 1981, 48 (03): : 417 - 433
  • [9] An instrumental variable model of multiple discrete choice
    Chesher, Andrew
    Rosen, Adam M.
    Smolinski, Konrad
    [J]. QUANTITATIVE ECONOMICS, 2013, 4 (02) : 157 - 196
  • [10] Performance of genetic risk scores as an instrumental variable in pharmacoepidemiology
    Uddin, Md Jamal
    Ekstrom, Claus Thorn
    Nordentoft, Merete
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 : 317 - 317