Nonlinear aeroservoelastic control using Euler-Lagrange theory

被引:0
|
作者
Prasanth, RK [1 ]
Mehra, RK [1 ]
机构
[1] Sci Syst Co, Woburn, MA 01801 USA
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
An Euler-Lagrange (EL) system is a dynamical system governed by the Euler-Lagrange equations. In this paper, we consider asymptotic stabilization of EL systems with arbitrary La grangians arising in aeroelasticity. First, sufficient conditions for local and global asymptotic stability of equilibrium points of EL systems are stated. These conditions are in terms of the Lagrangian and an associated Hamiltonian (storage function). We then give a procedure to design a Lyapunov stable stabilizing controller with its own Lagrangian. This procedure involves shaping the closed loop Lagrangian to satisfy the sufficient conditions for stability. Two examples to illustrate the approach are presented. The first is a simple problem that permits hand calculations; while the second example considers a nonlinear version of the Benchmark Active Control Technology (BACT) wind tunnel model for aeroelasticity.
引用
收藏
页码:837 / 847
页数:11
相关论文
共 50 条
  • [1] Control of a nonlinear aeroelastic system using Euler-Lagrange theory
    Prasanth, RK
    Mehra, RK
    [J]. JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (06) : 1134 - 1139
  • [2] Asymptotic optimal control of uncertain nonlinear Euler-Lagrange systems
    Dupree, Keith
    Patre, Parag M.
    Wilcox, Zachary D.
    Dixon, Warren E.
    [J]. AUTOMATICA, 2011, 47 (01) : 99 - 107
  • [3] On nonlinear control of Euler-Lagrange systems: Disturbance attenuation properties
    Scherpen, JMA
    Ortega, R
    [J]. SYSTEMS & CONTROL LETTERS, 1997, 30 (01) : 49 - 56
  • [4] Optimal control of a class of nonlinear systems using Euler-Lagrange back integration method
    Aksoy, Orhan
    Zergeroglu, Erkan
    [J]. JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2023, 38 (04): : 2555 - 2563
  • [5] Linear control of Euler-Lagrange systems
    Alvarez-Ramirez, J
    Cervantes, I
    [J]. PHYSICS LETTERS A, 2000, 278 (1-2) : 77 - 87
  • [6] Output synchronization control of Euler-Lagrange systems with nonlinear damping terms
    Kyrkjebo, Erik
    Pettersen, Kristin Y.
    [J]. 2005 44TH IEEE CONFERENCE ON DECISION AND CONTROL & EUROPEAN CONTROL CONFERENCE, VOLS 1-8, 2005, : 4951 - 4957
  • [7] Nonlinear antiwindup applied to Euler-Lagrange systems
    Morabito, F
    Teel, AR
    Zaccarian, L
    [J]. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 2004, 20 (03): : 526 - 537
  • [8] On the validity of the Euler-Lagrange equation in a nonlinear case
    Bonfanti, Giovanni
    Mazzola, Marco
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 266 - 269
  • [9] THE INTERIOR EULER-LAGRANGE OPERATOR IN FIELD THEORY
    Volna, Jana
    Urban, Zbynek
    [J]. MATHEMATICA SLOVACA, 2015, 65 (06) : 1427 - 1444
  • [10] PASSIVITY BASED NONLINEAR CONTROL OF HYDRAULIC ACTUATORS BASED ON AN EULER-LAGRANGE FORMULATION
    Li, Perry Y.
    Wang, Meng
    [J]. PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE AND BATH/ASME SYMPOSIUM ON FLUID POWER AND MOTION CONTROL (DSCC 2011), VOL 1, 2012, : 107 - 114