Uncertainty estimation of predictions of peptides' chromatographic retention times in shotgun proteomics
被引:17
|
作者:
Afkham, Heydar Maboudi
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, SwedenKTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, Sweden
Afkham, Heydar Maboudi
[1
]
Qiu, Xuanbin
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, SwedenKTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, Sweden
Qiu, Xuanbin
[1
]
The, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, SwedenKTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, Sweden
The, Matthew
[1
]
Kall, Lukas
论文数: 0引用数: 0
h-index: 0
机构:
KTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, SwedenKTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, Sweden
Kall, Lukas
[1
]
机构:
[1] KTH Royal Inst Technol, Sch Biotechnol, Sci Life Lab, S-17121 Solna, Sweden
Motivation: Liquid chromatography is frequently used as a means to reduce the complexity of peptide-mixtures in shotgun proteomics. For such systems, the time when a peptide is released from a chromatography column and registered in the mass spectrometer is referred to as the peptide's retention time. Using heuristics or machine learning techniques, previous studies have demonstrated that it is possible to predict the retention time of a peptide from its amino acid sequence. In this paper, we are applying Gaussian Process Regression to the feature representation of a previously described predictor ELUDE. Using this framework, we demonstrate that it is possible to estimate the uncertainty of the prediction made by the model. Here we show how this uncertainty relates to the actual error of the prediction. Results: In our experiments, we observe a strong correlation between the estimated uncertainty provided by Gaussian Process Regression and the actual prediction error. This relation provides us with new means for assessment of the predictions. We demonstrate how a subset of the peptides can be selected with lower prediction error compared to the whole set. We also demonstrate how such predicted standard deviations can be used for designing adaptive windowing strategies.
机构:
Indiana Univ, Sch Informat, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA
Alves, Pedro
Arnold, Randy J.
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Dept Chem, Bloomington, IN USA
Indiana Univ, Natl Ctr Glyc & Glycoprote, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA
Arnold, Randy J.
Clemmer, David E.
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Dept Chem, Bloomington, IN USA
Indiana Univ, Natl Ctr Glyc & Glycoprote, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA
Clemmer, David E.
Li, Yixue
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R ChinaIndiana Univ, Dept Chem, Bloomington, IN USA
Li, Yixue
Reilly, James P.
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Dept Chem, Bloomington, IN USA
Indiana Univ, Natl Ctr Glyc & Glycoprote, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA
Reilly, James P.
Sheng, Quanhu
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Sch Informat, Bloomington, IN USA
Indiana Univ, Natl Ctr Glyc & Glycoprote, Bloomington, IN USA
Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R ChinaIndiana Univ, Dept Chem, Bloomington, IN USA
Sheng, Quanhu
Tang, Haixu
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Sch Informat, Bloomington, IN USA
Indiana Univ, Dept Biol, Ctr Genom & Bioinformat, Bloomington, IN USA
Indiana Univ, Natl Ctr Glyc & Glycoprote, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA
Tang, Haixu
Xun, Zhiyin
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Dept Chem, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA
Xun, Zhiyin
Zeng, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shanghai Inst Biol Sci, Shanghai, Peoples R ChinaIndiana Univ, Dept Chem, Bloomington, IN USA
Zeng, Rong
Radivojac, Predrag
论文数: 0引用数: 0
h-index: 0
机构:
Indiana Univ, Sch Informat, Bloomington, IN USAIndiana Univ, Dept Chem, Bloomington, IN USA