Hurst exponent estimation based on Modified Aggregated Variance Method

被引:1
|
作者
Bao Guo-ping [1 ]
Ying Yi-rong [1 ]
机构
[1] Shanghai Univ, Sch Int Business & Management, Shanghai 201800, Peoples R China
关键词
R/S analysis; time series; Hurst exponent; Modified Aggregated Variance Method;
D O I
10.1109/SOLI.2006.234909
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hurst exponent is an important index to describe the fractional Brownian motion, many paper got the result based on big data sample. To small sample we designed a Modified Aggregated Variance Method to evaluate the Hurst exponent based on the Aggregated Variance Method. We found that the new method could improve the R-squared when the sample data relatively small.
引用
收藏
页码:51 / +
页数:3
相关论文
共 50 条
  • [1] Estimation of Hurst exponent revisited
    Mielniczuk, J.
    Wojdyllo, P.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (09) : 4510 - 4525
  • [2] The rescaled variance statistic and the determination of the Hurst exponent
    Cajueiro, DO
    Tabak, BM
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 70 (03) : 172 - 179
  • [3] A note on scaled variance ratio estimation of the Hurst exponent with application to agricultural commodity prices
    Turvey, Calum G.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 377 (01) : 155 - 165
  • [4] Bayesian Approach to Hurst Exponent Estimation
    Dlask, Martin
    Kukal, Jaromir
    Vysata, Oldrich
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (03) : 973 - 983
  • [5] Bayesian Approach to Hurst Exponent Estimation
    Martin Dlask
    Jaromir Kukal
    Oldrich Vysata
    [J]. Methodology and Computing in Applied Probability, 2017, 19 : 973 - 983
  • [6] Wavelets Comparison at Hurst Exponent Estimation
    Schurrer, Jaroslav
    [J]. 34TH INTERNATIONAL CONFERENCE MATHEMATICAL METHODS IN ECONOMICS (MME 2016), 2016, : 757 - 761
  • [7] Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise
    Liu, Yingjun
    Liu, Yong
    Wang, Kun
    Jiang, Tianzi
    Yang, Lihua
    [J]. PHYSICAL REVIEW E, 2009, 80 (06)
  • [8] HURST EXPONENT ESTIMATION FOR MOVING FRACTAL OBJECT BY MAXIMUM LIKELIHOOD METHOD
    Parshin, Alexander
    [J]. 2014 24TH INTERNATIONAL CRIMEAN CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY (CRIMICO), 2014, : 1127 - 1128
  • [9] A blind method for the estimation of the Hurst exponent in time series: Theory and application
    Esposti, Federico
    Ferrario, Manuela
    Signorini, Maria Gabriella
    [J]. CHAOS, 2008, 18 (03)
  • [10] Analysis of a Hurst Parameter Estimator Based on the Modified Allan Variance
    Bianchi, Alessandra
    Bregni, Stefano
    Crimaldi, Irene
    Ferrari, Marco
    [J]. 2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012,