Kinetic effects in tokamak scrape-off layer plasmas

被引:82
|
作者
Batishchev, OV
Krasheninnikov, SI
Catto, PJ
Batishcheva, AA
Sigmar, DJ
Xu, XQ
Byers, JA
Rognlien, TD
Cohen, RH
Shoucri, MM
Shkarofskii, IP
机构
[1] MV KELDYSH APPL MATH INST, MOSCOW 125047, RUSSIA
[2] KURCHATOV INST ATOM ENERGY, MOSCOW 123098, RUSSIA
[3] MIT, CTR PLASMA FUS, CAMBRIDGE, MA 02139 USA
[4] LAWRENCE LIVERMORE NATL LAB, LIVERMORE, CA 94550 USA
[5] CTR CANADIEN FUS MAGNET, VARENNES, PQ J3X 1S1, CANADA
关键词
D O I
10.1063/1.872280
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The short mean-free path expansion used in fluid modeling of scrape-off layer plasmas is often violated for typical discharge parameters, especially by the superthermal particles, which carry most of the heat flux. Thus, the tail of the distribution function can strongly depart from Maxwellian due to nonlocal mean-free path effects, which can modify plasma transport, impurity radiation, and plasma-neutral gas interactions. These nonlocal effects become particularly pronounced for detached plasma conditions that are characterized by sharp gradients in the plasma parameters along the magnetic field. These problems are being addressed by developing one spatial dimension and two velocity variables, fully kinetic, collisional, and time-dependent particle-in-cell code, W1 [Contrib. Plasma Phys. 34, 436 (1994)], and its parallel-computer version, PW1 [Contrib. Plasma Phys. 34, 424 (1996)]. Comparisons are made with the Fokker-Planck code ALLA [Phys. Plasmas 3, 1634 (1996)] and with experimental results. Kinetic effects on probe measurement interpretation, impurity radiation, and parallel heat conductivity due to non-Maxwellian features in scrape-off layer plasmas are considered. Heat conductivity is compared with nd hoc heat flux limit models. (C) 1997 American Institute of Physics.
引用
收藏
页码:1672 / 1680
页数:9
相关论文
共 50 条
  • [1] Scaling laws for electron kinetic effects in tokamak scrape-off layer plasmas
    Power, D.
    Mijin, S.
    Wigram, M.
    Militello, F.
    Kingham, R. J.
    [J]. NUCLEAR FUSION, 2023, 63 (08)
  • [2] DETACHED SCRAPE-OFF LAYER TOKAMAK PLASMAS
    KESNER, J
    [J]. PHYSICS OF PLASMAS, 1995, 2 (06) : 1982 - 1988
  • [3] Kinetic modeling of scrape-off layer plasmas
    Kupfer, K
    Harvey, RW
    Sauter, O
    Schaffer, MJ
    Staebler, GM
    [J]. PHYSICS OF PLASMAS, 1996, 3 (10) : 3644 - 3652
  • [4] RESISTIVE BALLOONING MODES IN SCRAPE-OFF LAYER OF TOKAMAK PLASMAS
    NOVAKOVSKII, SV
    GUZDAR, PN
    DRAKE, JF
    LIU, CS
    [J]. PHYSICS OF PLASMAS, 1995, 2 (10) : 3764 - 3768
  • [5] Transport simulations for the scrape-off layer and divertor plasmas in KSTAR tokamak
    Kim, S. S.
    Yoon, S. W.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 70 - 71
  • [6] Total fluid pressure imbalance in the scrape-off layer of tokamak plasmas
    Churchill, R. M.
    Canik, J. M.
    Chang, C. S.
    Hager, R.
    Leonard, A. W.
    Maingi, R.
    Nazikian, R.
    Stotler, D. P.
    [J]. NUCLEAR FUSION, 2017, 57 (04)
  • [7] Interaction of scrape-off layer currents with magnetohydrodynamical instabilities in tokamak plasmas
    Fitzpatrick, Richard
    [J]. PHYSICS OF PLASMAS, 2007, 14 (06)
  • [8] BLOBS IN THE TOKAMAK SCRAPE-OFF LAYER
    Jovanovic, D.
    Shukla, P. K.
    Pegoraro, P.
    [J]. 24TH SUMMER SCHOOL AND INTERNATIONAL SYMPOSIUM ON THE PHYSICS OF IONIZED GASES, CONTRIBUTED PAPERS, 2008, (84): : 447 - +
  • [9] LARGE PROBES IN TOKAMAK SCRAPE-OFF PLASMAS - THE COLLISIONLESS SCRAPE-OFF LAYER - OPERATION IN THE SHADOW OF LIMITERS OR DIVERTOR PLATES
    STANGEBY, PC
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1985, 18 (08) : 1547 - 1559
  • [10] Plasma shaping effects on tokamak scrape-off layer turbulence
    Riva, Fabio
    Lanti, Emmanuel
    Jolliet, Sebastien
    Ricci, Paolo
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (03)