Low Temperature Combustion Synthesis and Electrochemical Performance of xLi2MnO3-(1-x)LiNi0.7Co0.3O2

被引:0
|
作者
Wu Bao-Ming [1 ]
Ye Nai-Qing [1 ,2 ]
Ma Zhen [1 ]
Han Jian-Feng [1 ]
Xu Dong [1 ]
机构
[1] Guilin Univ Technol, Coll Mat Sci & Engn, Guilin 541004, Guangxi, Peoples R China
[2] Minist Educ, Key Lab New Proc Technol Nonferrous Met & Mat, Guilin 541004, Guangxi, Peoples R China
关键词
Lithium-ion batteries; cathode material; xLi(2)MnO(3)-(1-x)LiNi0.7Co0.3O2; low temperature combustion synthesis; CATHODE MATERIALS; PROGRESS; LIFEPO4; LI2MNO3; FE;
D O I
10.3969/j.issn.1001-4861.2013.00.275
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The cathode materials for lithium ion batteries xLi(2)MnO(3)-(1-x)LiNi0.7Co0.3O2 were prepared via low temperature combustion process. The structure, morphology and electrochemical performance of the synthesized materials were studied systematically. The optimal preparing conditions and the optimal ratio of Li2MnO3 for the cathode materials were studied by single factor experiment. The experimental results show that the synthesized products have alpha-NaFeO(2)layered structure, sphere-like morphology and excellent electrochemical performance; the optimal conditions to prepare these materials are to reheat the combustion products at 850 degrees C for 20 h, the optimal ratio of Li2MnO3 is x =0.7. The cathode material 0.7Li(2)MnO(3)-0.3LiNi(0.7)Co(0.3)O(2) synthesized under such conditions has the highest discharge capacity of 263.1 mAh.g(-1), excellent cycle and rate performance.
引用
收藏
页码:1835 / 1841
页数:7
相关论文
共 29 条
  • [1] Ammundsen B, 2001, ADV MATER, V13, P943, DOI 10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO
  • [2] 2-J
  • [3] Moisture driven aging mechanism of LiFePO4 subjected to air exposure
    Cuisinier, Marine
    Martin, Jean-Frederic
    Dupre, Nicolas
    Yamada, Atsuo
    Kanno, Ryoji
    Guyomard, Dominique
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (02) : 238 - 241
  • [4] Du K, 2010, CHINESE J INORG CHEM, V26, P1235
  • [5] The significance of the Li2MnO3 component in 'composite' xLi2MnO3 • (1-x)LiMn0.5Ni0.5O2 electrodes
    Johnson, CS
    Kim, JS
    Lefief, C
    Li, N
    Vaughey, JT
    Thackeray, MM
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (10) : 1085 - 1091
  • [6] Structural and electrochemical analysis of layered compounds from Li2MnO3
    Johnson, CS
    Korte, SD
    Vaughey, JT
    Thackeray, MM
    Bofinger, TE
    Shao-Horn, Y
    Hackney, SA
    [J]. JOURNAL OF POWER SOURCES, 1999, 81 : 491 - 495
  • [7] Synthesis of xLi2MnO3•(1-x)LiMO2 (M = Cr, Mn, Co, Ni) nanocomposites and their electrochemical properties
    Kim, Donghan
    Gim, Jihyeon
    Lim, Jinsub
    Park, Sangjun
    Kim, Jaekook
    [J]. MATERIALS RESEARCH BULLETIN, 2010, 45 (03) : 252 - 255
  • [8] Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability
    Li, J.
    Kloepsch, R.
    Stan, M. C.
    Nowak, S.
    Kunze, M.
    Winter, M.
    Passerini, S.
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4821 - 4825
  • [9] Inexpensive synthesis of metal-doped LiFePO4 from laterite lixivium and its electrochemical characterization
    Li, Ling-jun
    Li, Xin-hai
    Wang, Zhi-xing
    Guo, Hua-jun
    Wu, Ling
    Hao, Yan
    Zheng, Jun-chao
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 497 (1-2) : 176 - 181
  • [10] Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2
    Lu, ZH
    Beaulieu, LY
    Donaberger, RA
    Thomas, CL
    Dahn, JR
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (06) : A778 - A791