Extremal Graphs with Girth Nine

被引:0
|
作者
Zhang Rui [1 ]
Sun Yongqi [1 ]
Wu Yali [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing 100044, Peoples R China
关键词
extremal graph; cycle; girth; cage;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For integers s >= 4 and n >= s + 1, let ex(n; s) denote the maximum number of edges in a graph with n vertices and girth at least s+1, and EX (n; s) denote the set of extremal graphs. For s = 8, the values of ex(n; s) for n <= 24 are known. In this paper, we characterize the graphs in EX(n; 8) for n = 13, 16, 18, 22 and 26, and determine the exact values of ex(n; 8) for 25 <= n <= 30, in which the result ex(25; 8) = 31 corrects a small error in Marshall's paper [Electronic Notes in Discrete Mathematics 38 (2011) 615-620]. Moreover, we improve lower bounds on ex(n; 8) for 31 <= n <= 57 based on three special graphs.
引用
收藏
页码:345 / 356
页数:12
相关论文
共 50 条
  • [1] Extremal bipartite graphs with high girth
    Balbuena, C.
    Garcia-Vazquez, P.
    Marcote, X.
    Valenzuela, J. C.
    [J]. ARS COMBINATORIA, 2007, 83 : 3 - 14
  • [2] On the structure of extremal graphs of high girth
    Lazebnik, F
    Wang, P
    [J]. JOURNAL OF GRAPH THEORY, 1997, 26 (03) : 147 - 153
  • [3] On the girth of extremal graphs without shortest cycles
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (23) : 5682 - 5690
  • [4] Extremal Edge-Girth-Regular Graphs
    Ajda Zavrtanik Drglin
    Slobodan Filipovski
    Robert Jajcay
    Tom Raiman
    [J]. Graphs and Combinatorics, 2021, 37 : 2139 - 2154
  • [5] Extremal Edge-Girth-Regular Graphs
    Drglin, Ajda Zavrtanik
    Filipovski, Slobodan
    Jajcay, Robert
    Raiman, Tom
    [J]. GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2139 - 2154
  • [6] EXTREMAL REGULAR GRAPHS WITH PRESCRIBED ODD GIRTH
    ZHANG, GH
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1994, 60 (02) : 222 - 238
  • [7] Radius r extremal graphs of girth 5
    Garnick, David K.
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 1 - 23
  • [8] On the minimum order of extremal graphs to have a prescribed girth
    Balbuena, C.
    Garcia-Vazquez, P.
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 251 - 257
  • [9] An Extremal Problem For Random Graphs And The Number Of Graphs With Large Even-Girth
    Y. Kohayakawa
    B. Kreuter
    A. Steger
    [J]. Combinatorica, 1998, 18 : 101 - 120
  • [10] An extremal problem for random graphs and the number of graphs with large even-girth
    Kohayakawa, Y
    Kreuter, B
    Steger, A
    [J]. COMBINATORICA, 1998, 18 (01) : 101 - 120