Modeling and analysis of ionospheric parameters by a combination of wavelet transform and autoregression models

被引:10
|
作者
Mandrikova, O. V. [1 ,2 ]
Glushkova, N. V. [1 ,2 ]
Zhivet'ev, I. V. [1 ]
机构
[1] Russian Acad Sci, Inst Space Phys Res & Radiowave Propagat, Far East Div, Paratunka 684034, Kamchatka, Russia
[2] Kamchatka State Technol Univ, Petropavlovsk Kamchatski 683003, Russia
基金
俄罗斯基础研究基金会;
关键词
Solar Activity; Total Electron Content; Critical Frequency; ARIMA Model; Ionospheric Parameter;
D O I
10.1134/S0016793214050107
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We propose a method of the modeling and analysis of ionospheric parameters by combining wavelet transform with autoregression models (integrated moving average). The method makes it possible to reveal regularities in ionospheric parameters and to make forecasts on variations. Also, this method can be used to fill the gaps in ionospheric parameters, with consideration of their diurnal and seasonal variations. The method was tested on foF2 data and data on the total electron content for the regions of Kamchatka and Magadan. The models constructed for the natural variation in ionospheric parameters allowed us to analyze its dynamical mode and build a forecast with a step of up to five hours. Based on estimates for model errors, we revealed anomalies arising during periods of increased solar activity and strong earthquakes in Kamchatka.
引用
收藏
页码:593 / 600
页数:8
相关论文
共 50 条
  • [1] Modeling and analysis of ionospheric parameters by a combination of wavelet transform and autoregression models
    O. V. Mandrikova
    N. V. Glushkova
    I. V. Zhivet’ev
    [J]. Geomagnetism and Aeronomy, 2014, 54 : 593 - 600
  • [2] Simulation and analysis of time variations in ionospheric parameters on the basis of wavelet transform and multicomponent models
    Mandrikova O.V.
    Glushkova N.V.
    Polozov Y.A.
    [J]. Pattern Recognition and Image Analysis, 2015, 25 (3) : 470 - 480
  • [3] Method of ionospheric data analysis based on a combination of wavelet transform and neural networks
    Mandrikova, O.
    Polozov, Yu.
    Geppener, V.
    [J]. 3RD INTERNATIONAL CONFERENCE INFORMATION TECHNOLOGY AND NANOTECHNOLOGY (ITNT-2017), 2017, 201 : 756 - 766
  • [4] ESTIMATE OF AUTOREGRESSION PARAMETERS BASED ON HOUGH TRANSFORM
    DONCHENKO, VS
    SHPAK, VM
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1994, 37 (7-8): : A38 - A44
  • [5] Ionospheric parameter modelling and anomaly discovery by combining the wavelet transform with autoregressive models
    Mandrikova, Oksana V.
    Fetisova , Nadegda V.
    Al-Kasasbeh, Riad Taha
    Klionskiy, Dmitry M.
    Geppener, Vladimir V.
    Ilyash, Maksim Y.
    [J]. ANNALS OF GEOPHYSICS, 2015, 58 (05)
  • [6] Analysis of the wavelet transform parameters in images processing
    Farias, G.
    Santos, M.
    [J]. INTERNATIONAL E-CONFERENCE ON COMPUTER SCIENCE 2005, 2005, 2 : 51 - 54
  • [7] Modeling and analysis of ionospheric parameters based on multicomponent model
    Mandrikova, Oksana
    Fetisova, Nadezhda
    [J]. JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2020, 208 (208)
  • [8] Interpretation of Structural Parameters for Models with Spatial Autoregression
    Pietrzak, Michal Bernard
    [J]. EQUILIBRIUM-QUARTERLY JOURNAL OF ECONOMICS AND ECONOMIC POLICY, 2013, 8 (02): : 129 - 155
  • [9] Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters
    Muhtarov, P
    Kutiev, I
    Cander, L
    [J]. INVERSE PROBLEMS, 2002, 18 (01) : 49 - 65
  • [10] Rolling element bearing diagnostics by combination of envelope analysis and wavelet transform
    [J]. Tang, Y., 2001, University of Science and Technology Beijing (08):