Quasilinear eigenvalue problems with singular weights for the p-Laplacian

被引:5
|
作者
Drabek, Pavel [1 ,2 ]
Hernandez, Jesus [3 ]
机构
[1] Univ West Bohemia, Dept Math, Univ 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, NTIS, Univ 8, Plzen 30614, Czech Republic
[3] Univ Complutense Madrid, Inst Matemat Interdisciplinar, E-28040 Madrid, Spain
关键词
Quasilinear eigenvalue problem; p-Laplacian with singular weights; Principal eigenvalue; Regularity of eigenfunction; Variational characterization; FLAT SOLUTIONS; UNIQUENESS; EXISTENCE; EQUATIONS; SIMPLICITY; PRINCIPLE;
D O I
10.1007/s10231-018-0811-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study quasilinear homogeneous eigenvalue problem with the p-Laplacian involving singular weights. We work on a bounded domain with Lipschitzian boundary and the weights are negative powers of the distance from the boundary. We generalize results concerning the existence and properties of the principal eigenvalue and corresponding eigenfunctions for both quasilinear unweighted case and singular linear case.
引用
收藏
页码:1069 / 1086
页数:18
相关论文
共 50 条
  • [1] Quasilinear eigenvalue problems with singular weights for the p-Laplacian
    Pavel Drábek
    Jesús Hernández
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 1069 - 1086
  • [2] EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN WITH INDEFINITE WEIGHTS
    Cuesta, Mabel
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [3] Eigenvalue problems for the p-Laplacian
    Lê, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (05) : 1057 - 1099
  • [4] WEIGHTED EIGENVALUE PROBLEMS FOR THE p-LAPLACIAN WITH WEIGHTS IN WEAK LEBESGUE SPACES
    Anoop, T. V.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [5] ON SINGULAR p-LAPLACIAN PROBLEMS
    Perera, Kanishka
    Silva, Elves A. B.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (01) : 105 - 120
  • [6] POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS
    王影
    罗党
    王明新
    [J]. Acta Mathematica Scientia, 2012, 32 (03) : 1002 - 1020
  • [7] POSITIVE SOLUTIONS TO THE p-LAPLACIAN WITH SINGULAR WEIGHTS
    Wang Ying
    Luo Dang
    Wang Mingxin
    [J]. ACTA MATHEMATICA SCIENTIA, 2012, 32 (03) : 1002 - 1020
  • [8] THE DUAL EIGENVALUE PROBLEMS FOR p-LAPLACIAN
    Cheng, Y. -H.
    Lian, W. -C.
    Wang, W. -C.
    [J]. ACTA MATHEMATICA HUNGARICA, 2014, 142 (01) : 132 - 151
  • [9] The dual eigenvalue problems for p-Laplacian
    Yan-Hsiou Cheng
    Wei-Cheng Lian
    Wei-Chuan Wang
    [J]. Acta Mathematica Hungarica, 2014, 142 : 132 - 151
  • [10] LINKED EIGENVALUE PROBLEMS FOR THE P-LAPLACIAN
    BINDING, PA
    HUANG, YX
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 : 1023 - 1036