Fabrication of ternary NaTaO3/g-C3N4/G heterojunction photocatalyst with enhanced activity for Rhodamine B degradation

被引:31
|
作者
Yang, Fan [1 ]
Yan, Linan [1 ]
Zhang, Bing [1 ]
He, Xing [1 ]
Li, Yun [1 ]
Tang, Yushu [1 ]
Ma, Chi [1 ]
Li, Yongfeng [1 ]
机构
[1] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
NaTaO3; G-C3N4; Graphene; Traditional heterojunction-type mechanism; Photocatalyst; Free radical participation; CARBON QUANTUM DOTS; Z-SCHEME; EFFICIENT PHOTOCATALYST; HYDROGEN-PRODUCTION; NITRIDE NANOSHEETS; G-C3N4; NANOCOMPOSITE; PERFORMANCE; REDUCTION; COMPOSITE;
D O I
10.1016/j.jallcom.2019.07.052
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterojunction photocatalyst with highly efficient photocatalytic activity can enhance the separation efficiency of photogenerated electrons and holes. In this study, in-situ calcination and photochemical reduction self-assembly methods have been proposed to prepare highly efficient ternary NaTaO3 nanocube/g-C3N4 nanosheet/graphene oxide photocatalyst (NaTaO3/g-C3N4/G). In this hybrid structure, NaTaO3 as a kind of stable perovskite with highly positive valance band can form a heterojunction with g-C3N4, leading to the high separation efficiency of electrons and holes. In addition, it is found that the introduction of graphene can further improve the transportation of electrons and extend the light-response spectrum. The optimized ternary composite NaTaO3/g-C3N4/G shows significant enhanced photocatalytic activity with more than 99% removal of Rh B (20 mg/L, 80 mL) within 70 min under visible light, which is 3.1 times faster than that of pure g-C3N4 and 2.1 times faster than NaTaO3/g-C3N4. The photocatalytic mechanism is identified through the free radical quenching experiment. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:802 / 810
页数:9
相关论文
共 50 条
  • [1] Fabrication of novel ternary direct Z-scheme plus isotype heterojunction photocatalyst g-C3N4/g-C3N4/BiOBr with enhanced photocatalytic performance
    He, Bo
    Du, Yi
    Feng, Yibing
    Du, Minxing
    Wang, Jianyong
    Qu, Junnan
    Liu, Yang
    Jiang, Nan
    Wang, JiaJia
    Sun, XinYue
    APPLIED SURFACE SCIENCE, 2020, 506
  • [2] Degradation of rhodamine B by g-C3N4/MoS2 composite photocatalyst
    Fan, Yu
    Yang, Yan-ning
    Ding, Chen
    Wang, Hai-jun
    FERROELECTRICS, 2022, 595 (01) : 146 - 155
  • [3] Enhanced photocatalytic activity of ternary g-C3N4/NaTaO3/biomass carbon composite photocatalysts under visible-light radiation
    Shengze Li
    Jinlong Liao
    Yubin Dong
    Yaqin Fu
    Yaofeng Zhu
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 19613 - 19622
  • [4] Enhanced photocatalytic activity of ternary g-C3N4/NaTaO3/biomass carbon composite photocatalysts under visible-light radiation
    Li, Shengze
    Liao, Jinlong
    Dong, Yubin
    Fu, Yaqin
    Zhu, Yaofeng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2020, 31 (22) : 19613 - 19622
  • [5] Fabrication of a g-C3N4/MoS2 photocatalyst for enhanced RhB degradation
    Cui, Zhen
    Wu, Hui
    Bai, Kaifei
    Chen, Xiwei
    Li, Enling
    Shen, Yang
    Wang, Mingjun
    Physica E: Low-Dimensional Systems and Nanostructures, 2022, 144
  • [6] Fabrication of a g-C3N4/MoS2 photocatalyst for enhanced RhB degradation
    Cui, Zhen
    Wu, Hui
    Bai, Kaifei
    Chen, Xiwei
    Li, Enling
    Shen, Yang
    Wang, Mingjun
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2022, 144
  • [7] Visible light responsive SiO2/g-C3N4/BiOBr/Bi heterojunction photocatalyst for degradation of rhodamine B
    Jian, Shaoju
    Ran, Li
    Zhu, Yaqin
    Yang, Weisen
    Liu, Yifei
    Yang, Haoqi
    Duan, Gaigai
    Jiang, Shaohua
    COMPOSITES COMMUNICATIONS, 2024, 49
  • [8] Study on the Photocatalytic Degradation of Rhodamine B by g-C3N4/Bi2Fe4O9 Heterojunction Photocatalyst
    Shuyan Qi
    Ling Guan
    Ruiyan Zhang
    Shanqiang Wu
    Kaiyao Zhang
    Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33 : 3675 - 3683
  • [9] Study on the Photocatalytic Degradation of Rhodamine B by g-C3N4/Bi2Fe4O9 Heterojunction Photocatalyst
    Qi, Shuyan
    Guan, Ling
    Zhang, Ruiyan
    Wu, Shanqiang
    Zhang, Kaiyao
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2023, 33 (11) : 3675 - 3683
  • [10] WO3 nanosheets/g-C3N4 nanosheets’ nanocomposite as an effective photocatalyst for degradation of rhodamine B
    Senlin Deng
    Zebin Yang
    Guojun Lv
    Yongqiang Zhu
    Haichao Li
    Fumin Wang
    Xubin Zhang
    Applied Physics A, 2019, 125