FFLD-Based Modeling of Fractional-Order State Space LTI MIMO Systems

被引:1
|
作者
Latawiec, Krzysztof J. [1 ]
Stanislawski, Rafal [1 ]
Lukaniszyn, Marian [1 ]
Rydel, Marek [1 ]
Szkuta, Boguslaw R. [1 ]
机构
[1] Opole Univ Technol, Dept Elect Control & Comp Engn, Ul Proszkowska 76, PL-45758 Opole, Poland
关键词
Grunwald-Letnikov fractional difference; Laguerre-based difference; Multivariable fractional difference; Fractional order systems; State space systems; APPROXIMATION; OPERATORS; DERIVATIVES;
D O I
10.1007/978-3-319-53934-8_36
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a multivariable version of the Grinwald-Letnikov fractional-order difference (FD) and approximates it with a powerful combination of finite fractional difference (FFD) and finite Laguerre-based difference (FLD) to yield finite fractional/Laguerre-based difference (FFLD). The multivariable FFLD is effectively used to model fractional-order state-space LTI MIMO systems.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [1] Grunwald-Letnikoy-Laguerre Modeling of Discrete-Time Noncommensurate Fractional-Order State Space LTI MIMO Systems
    Latawiec, Krzysztof J.
    Stanislawski, Rafal
    Lukaniszyn, Marian
    Rydel, Marek
    Szkuta, Boguslaw R.
    [J]. NON-INTEGER ORDER CALCULUS AND ITS APPLICATIONS, 2019, 496 : 74 - 83
  • [2] Laguerre-based modeling of fractional-order LTI SISO systems
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    Hunek, Wojciech P.
    Lukaniszyn, Marian
    [J]. 2013 18TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS (MMAR), 2013, : 610 - 615
  • [3] Towards a New Stability Criterion for Fractional-Order Perfect Control of LTI MIMO Discrete-Time Systems in State-Space
    Hunek, Wojciech P.
    Wach, Lukasz
    [J]. 2017 3RD IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2017, : 134 - 139
  • [4] STABILITY ANALYSIS OF INTERCONNECTED DISCRETE-TIME FRACTIONAL-ORDER LTI STATE-SPACE SYSTEMS
    Grzymkowski, Lukasz
    Trofimowicz, Damian
    Stefanski, Tomasz P.
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2020, 30 (04) : 649 - 658
  • [5] Fractional-Order Observer for Integer-Order LTI Systems
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    [J]. 2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 2101 - 2106
  • [6] Stable regions in the parameter space of delays for LTI fractional-order systems with two delays
    Mesbahi, Afshin
    Haeri, Mohammad
    [J]. SIGNAL PROCESSING, 2015, 107 : 415 - 424
  • [7] Fractional-Order Discrete-Time Laguerre Filters: A New Tool for Modeling and Stability Analysis of Fractional-Order LTI SISO Systems
    Stanislawski, Rafal
    Latawiec, Krzysztof J.
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2016, 2016
  • [8] Stability Analysis of LTI Fractional-order Systems with Distributed Delay
    Pakzad, Mohammad Ali
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5484 - 5489
  • [9] State-space analysis of linear fractional-order systems
    Laboratoire L2CSP, Université Mouloud Mammeri de Tizi Ouzou, BP 17, RP, 15000 Tizi-Ouzou, Algeria
    不详
    [J]. J. Eur. Syst. Autom., 2008, 6-8 (825-838): : 825 - 838
  • [10] Fractional-Order Memory Reset Control for Integer-Order LTI Systems
    Weise, Christoph
    Wulff, Kai
    Reger, Johann
    [J]. 2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 5710 - 5715