Image Segmentation Variants for Semi-Automated Quantitative Microstructural Analysis with ImageJ

被引:8
|
作者
Lau, M. [1 ]
Morgenstern, F. [1 ]
Huebscher, R. [1 ]
Knospe, A. [1 ]
Herrmann, M. [1 ]
Doering, M. [2 ]
Lippmann, W. [1 ]
机构
[1] Tech Univ Dresden, Inst Energietech, Wasserstoff & Kernenergietech, D-01069 Dresden, Germany
[2] FCT Ingenieurkeram GmbH, Gewerbepk 11, D-96528 Frankenblick, Germany
来源
关键词
EXTRACTION;
D O I
10.3139/147.110626
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Porosity, pore distribution, mean grainsize, and grain size distribution determine the mechanical and physical properties of ceramics. The quantitative structural analysis is therefore essential for the characterization of sintered materials. A semi-automated structural analysis requires a preceding image segmentation step in which all pixels are divided into respective objects to be examined so that they can be clearly assigned to a microstructural constituent. The present work analyzes the watershed transformation, IsoData,and WEKA algorithm image segmentation methods with regard to a grain size and pore characterization using light micro- scope micrographs of solid-state sintered silicon carbide (SSiC). The open source software ImageJ is used for image segmentation and detection. It does not just provide a quick quantification of the microstructural constituents but can also be extended with a considerable number of plugins, thus providing great flexibility when working on image analysis tasks.
引用
收藏
页码:752 / 775
页数:24
相关论文
共 50 条
  • [1] An interactive ImageJ plugin for semi-automated image denoising in electron microscopy
    Roels, Joris
    Vernaillen, Frank
    Kremer, Anna
    Goncalves, Amanda
    Aelterman, Jan
    Luong, Hiep Q.
    Goossens, Bart
    Philips, Wilfried
    Lippens, Saskia
    Saeys, Yvan
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [2] An interactive ImageJ plugin for semi-automated image denoising in electron microscopy
    Joris Roels
    Frank Vernaillen
    Anna Kremer
    Amanda Gonçalves
    Jan Aelterman
    Hiêp Q. Luong
    Bart Goossens
    Wilfried Philips
    Saskia Lippens
    Yvan Saeys
    [J]. Nature Communications, 11
  • [3] Benchmarking Human Performance in Semi-Automated Image Segmentation
    Eramian, Mark
    Power, Christopher
    Rau, Stephen
    Khandelwal, Pulkit
    [J]. INTERACTING WITH COMPUTERS, 2020, 32 (03) : 233 - 245
  • [4] Semi-automated Enhanced Breast Tumor Segmentation for CT Image
    Wang, Chao
    Li, Meng
    Liu, Xia
    Liu, Zaiyi
    Zang, Yali
    Liu, Zhenyu
    Dong, Di
    Chang, Changhong
    Tian, Jie
    [J]. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 648 - 651
  • [5] Semi-automated Root Image Analysis (saRIA)
    Narisetti, Narendra
    Henke, Michael
    Seiler, Christiane
    Shi, Rongli
    Junker, Astrid
    Altmann, Thomas
    Gladilin, Evgeny
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [6] Semi-automated recognition of protozoa by image analysis
    Amaral, AL
    Baptiste, C
    Pons, MN
    Nicolau, A
    Lima, N
    Ferreira, EC
    Mota, M
    Vivier, H
    [J]. BIOTECHNOLOGY TECHNIQUES, 1999, 13 (02) : 111 - 118
  • [7] Semi-automated Root Image Analysis (saRIA)
    Narendra Narisetti
    Michael Henke
    Christiane Seiler
    Rongli Shi
    Astrid Junker
    Thomas Altmann
    Evgeny Gladilin
    [J]. Scientific Reports, 9
  • [8] An ImageJ Based Semi-Automated Morphometric Assessment of Nuclei in Oncopathology
    Raghavan, Vijayashree
    Rao, K. Ramesh
    [J]. INTERNATIONAL JOURNAL OF SCIENTIFIC STUDY, 2015, 3 (07) : 189 - 194
  • [9] LeafJ: An ImageJ Plugin for Semi-automated Leaf Shape Measurement
    Maloof, Julin N.
    Nozue, Kazunari
    Mumbach, Maxwell R.
    Palmer, Christine M.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (71):
  • [10] Variational approach to semi-automated 2D image segmentation
    Kukal, Jaromir
    Krbcova, Zuzana
    Nachtigalova, Iva
    Svihlik, Jan
    Fliegel, Karel
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XLII, 2019, 11137