Sections of elliptic surfaces and Zariski pairs for conic-line arrangements via dihedral covers

被引:16
|
作者
Tokunaga, Hiro-o [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
关键词
dihedral cover; Mordell-Weil group; elliptic surface; Zariski pair; FUNDAMENTAL-GROUPS; EXAMPLES;
D O I
10.2969/jmsj/06620613
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we make use of geometry of sections of elliptic surfaces and elementary arithmetic on the Mordell-Weil group in order to study existence problem of dihedral covers with given reduced curves as the branch loci. As an application, we give some examples of Zariski pairs (B1, B2) for "conic-line arrangements" satisfying the following conditions: (i) deg B-1 = deg B-2 = 7. (ii) Irreducible components of B-i (i = 1, 2) are lines and conics. (iii) Singularities of B-i (i = 1,2) are nodes, tacnodes and ordinary triple points.
引用
收藏
页码:613 / 640
页数:28
相关论文
共 30 条
  • [1] Trisections on certain rational elliptic surfaces and families of Zariski pairs degenerating to the same conic-line arrangement
    S. Bannai
    N. Kawana
    R. Masuya
    H. Tokunaga
    [J]. Geometriae Dedicata, 2022, 216
  • [2] Trisections on certain rational elliptic surfaces and families of Zariski pairs degenerating to the same conic-line arrangement
    Bannai, S.
    Kawana, N.
    Masuya, R.
    Tokunaga, H.
    [J]. GEOMETRIAE DEDICATA, 2022, 216 (01)
  • [3] Geometry of bisections of elliptic surfaces and Zariski -plets for conic arrangements
    Bannai, Shinzo
    Tokunaga, Hiro-o
    [J]. GEOMETRIAE DEDICATA, 2015, 178 (01) : 219 - 237
  • [4] Jacobian Schemes of Conic-Line Arrangements and Eigenschemes
    Beorchia, Valentina
    Miro-Roig, Rosa M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (01)
  • [5] Jacobian Schemes of Conic-Line Arrangements and Eigenschemes
    Valentina Beorchia
    Rosa M. Miró-Roig
    [J]. Mediterranean Journal of Mathematics, 2024, 21
  • [6] Conic-Line Arrangements in the Complex Projective Plane
    Piotr Pokora
    Tomasz Szemberg
    [J]. Discrete & Computational Geometry, 2023, 69 : 1121 - 1138
  • [7] Conic-Line Arrangements in the Complex Projective Plane
    Pokora, Piotr
    Szemberg, Tomasz
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2023, 69 (04) : 1121 - 1138
  • [8] On left regular bands and real conic-line arrangements
    Friedman, Michael
    Garber, David
    [J]. SEMIGROUP FORUM, 2019, 98 (01) : 83 - 139
  • [9] Freeness of conic-line arrangements in P2
    Schenck, Hal
    Tohaneanu, Stefan O.
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2009, 84 (02) : 235 - 258
  • [10] Zariski k-plets of rational curve arrangements and dihedral covers
    Bartolo, EA
    Tokunaga, H
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2004, 142 (1-3) : 227 - 233