Some extremal problems for hereditary properties of graphs

被引:0
|
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2014年 / 21卷 / 01期
关键词
extremal problems; Turan problems; hereditary property; largest eigen-value;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an infinite hereditary property of graphs P, the principal extremal parameter of P is the value [GRAPHICS] The Erdos-Stone theorem gives pi(P) if P is monotone, but this result does not apply to hereditary P. Thus, one of the results of this note is to establish pi(P) for any hereditary property P. Similar questions are studied for the parameter lambda((p)) (G); defined for every real number p >= 1 and every graph G of order n as [GRAPHICS] It is shown that the limit [GRAPHICS] exists for every hereditary property P. A key result of the note is the equality [GRAPHICS] which holds for all p > 1. In particular, edge extremal problems and spectral extremal problems for graphs are asymptotically equivalent.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Extremal graphs in some coloring problems
    Balakrishnan, R
    Sampathkumar, R
    Yegnanarayanan, V
    [J]. DISCRETE MATHEMATICS, 1998, 186 (1-3) : 15 - 24
  • [2] SOME EXTREMAL SEARCH PROBLEMS ON GRAPHS
    PETROV, NN
    [J]. DIFFERENTIAL EQUATIONS, 1982, 18 (05) : 591 - 595
  • [3] Some extremal problems of graphs with local constraints
    Borowiecki, M
    Sidorowicz, E
    [J]. DISCRETE MATHEMATICS, 2002, 251 (1-3) : 19 - 32
  • [4] Some extremal problems on the cycle length distribution of graphs
    Liu, Shaoqiang
    [J]. Journal of Combinatorial Mathematics and Combinatorial Computing, 2017, 100 : 155 - 171
  • [5] Some Extremal Problems for Edge-Regular Graphs
    Coolsaet, K.
    Johnson, P. D., Jr.
    Roblee, K. J.
    Smotzer, T. D.
    [J]. ARS COMBINATORIA, 2012, 105 : 411 - 418
  • [6] Extremal Properties of Some Topological Indices of Graphs
    Deng, Hanyuan
    Venkatakrishnan, Y. B.
    Balachandran, S.
    [J]. ARS COMBINATORIA, 2018, 139 : 327 - 336
  • [7] SOME EXTREMAL PROPERTIES CONCERNING TRANSITIVITY IN GRAPHS
    ENTRINGE.RC
    ERDOS, P
    HARNER, CC
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (06): : 929 - &
  • [8] ON SOME EXTREMAL GRAPHS
    MURTY, USR
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (1-2): : 69 - &
  • [9] Some extremal problems on Aα-spectral radius of graphs with given size
    Ye, Aiyun
    Guo, Shu-Guang
    Zhang, Rong
    [J]. DISCRETE APPLIED MATHEMATICS, 2024, 342 : 286 - 294
  • [10] ON EXTREMAL PROBLEMS OF GRAPHS AND GENERALIZED GRAPHS
    ERDOS, P
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1964, 2 (03) : 183 - &