On Quotientable Arc-transitive Graphs

被引:0
|
作者
Ma, Jicheng [1 ]
机构
[1] Chongqing Univ Arts & Sci, Chongqing Key Lab Grp & Graph Theories & Applicat, Chongqing 402160, Peoples R China
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We call an arc-transitive graph Gamma quotientable if it is a regular covering graph of an arc-transitive simple graph, and otherwise, Gamma is basic. In this paper, we investigate the quotientability of cubic arc-transitive graphs. It is proved that for any prime p > 3, a cubic arc-transitive graph of order 2p(2) is quotientable if and only if p equivalent to 1 mod 3. In addition, we prove that besides several special families, every cubic arc-transitive graph with arc-transitive solvable automorphism subgroups is quotientable. Moreover, two infinite families of quotientable cubic arc-transitive graphs, which are regular but non normal covering graphs, are given.
引用
收藏
页码:127 / 138
页数:12
相关论文
共 50 条
  • [1] On the orders of arc-transitive graphs
    Conder, Marston D. E.
    Li, Cai Heng
    Potocnik, Primoz
    [J]. JOURNAL OF ALGEBRA, 2015, 421 : 167 - 186
  • [2] On Pentavalent Arc-Transitive Graphs
    Li, Jingjian
    Ma, Jicheng
    [J]. ALGEBRA COLLOQUIUM, 2018, 25 (02) : 189 - 202
  • [3] On fixity of arc-transitive graphs
    Florian Lehner
    Primo? Poto?nik
    Pablo Spiga
    [J]. Science China Mathematics, 2021, 64 (12) : 2603 - 2610
  • [4] On fixity of arc-transitive graphs
    Lehner, Florian
    Potocnik, Primoz
    Spiga, Pablo
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (12) : 2603 - 2610
  • [5] On fixity of arc-transitive graphs
    Florian Lehner
    Primož Potočnik
    Pablo Spiga
    [J]. Science China Mathematics, 2021, 64 : 2603 - 2610
  • [6] Stability of arc-transitive graphs
    Surowski, DB
    [J]. JOURNAL OF GRAPH THEORY, 2001, 38 (02) : 95 - 110
  • [7] Arc-transitive trivalent Cayley graphs
    Conder, Marston
    [J]. JOURNAL OF ALGEBRA, 2022, 610 : 896 - 910
  • [8] On transitive one-factorizations of arc-transitive graphs
    Fang, X. G.
    Li, C. H.
    Wang, J.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2007, 114 (04) : 692 - 703
  • [9] ON THE ORDER OF ARC-STABILIZERS IN ARC-TRANSITIVE GRAPHS
    Verret, Gabriel
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (03) : 498 - 505
  • [10] Arc-transitive cycle decompositions of tetravalent graphs
    Miklavic, Stefko
    Potocnik, Primoz
    Wilson, Steve
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (06) : 1181 - 1192