LEAC: An efficient library for clustering with evolutionary algorithms

被引:7
|
作者
Robles-Berumen, Hermes [1 ]
Zafra, Amelia [2 ]
Fardoun, Habib M. [3 ]
Ventura, Sebastian [2 ,3 ,4 ]
机构
[1] Autonomous Univ Zacatecas, Elect Engn & Earth Sci, Zacatecas, Mexico
[2] Univ Cordoba, Dept Comp Sci & Numer Anal, Cordoba, Spain
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
[4] Maimonides Inst Biomed, Knowledge Discovery & Intelligent Syst Biomed Lab, Cordoba, Spain
关键词
Clustering; C plus plus library; Evolutionary algorithms; Genetic algorithms; Software;
D O I
10.1016/j.knosys.2019.05.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces LEAC, a new C++ partitioning clustering library based on evolutionary computation. LEAC provides plenty of elements (individual encoding schemes, genetic operators, evaluation metrics, among others) which allow an easy and fast development of new clustering algorithms. Furthermore, it includes 23 algorithms which represent the state-of-the-art in Evolutionary Algorithms for partial clustering. The paper describes through examples the main features and the design principles of the software, as well as how to use LEAC to carry out a comparison between different proposals and how to extend it by including new algorithms. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:117 / 119
页数:3
相关论文
共 50 条
  • [1] Efficient evolutionary algorithms for the clustering problem in directed graphs
    Dias, CR
    Ochi, LS
    [J]. CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 983 - 990
  • [2] Autonomous library for evolutionary algorithms
    Sprogar, M
    [J]. MELECON 2004: PROCEEDINGS OF THE 12TH IEEE MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, VOLS 1-3, 2004, : 591 - 594
  • [3] A new library for evolutionary algorithms
    Gawiejnowicz, Stanislaw
    Onak, Tomasz
    Suwalski, Cezary
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2006, 3911 : 414 - 421
  • [4] CLUSTERING ALGORITHMS FOR LIBRARY COMPARISON
    SRIDHAR, V
    MURTY, MN
    [J]. PATTERN RECOGNITION, 1991, 24 (09) : 815 - 823
  • [5] Fuzzy clustering with evolutionary algorithms
    Klawonn, F
    Keller, A
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1998, 13 (10-11) : 975 - 991
  • [6] A Survey of Evolutionary Algorithms for Clustering
    Hruschka, Eduardo Raul
    Campello, Ricardo J. G. B.
    Freitas, Alex A.
    de Carvalho, Andre C. Ponce Leon F.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2009, 39 (02): : 133 - 155
  • [7] Parallelizing evolutionary algorithms for clustering data
    Kwedlo, Wojciech
    [J]. PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2006, 3911 : 430 - 438
  • [8] Evolutionary Clustering Algorithms for Relational Data
    Banerjee, Amit
    Abu-Mahfouz, Issam
    [J]. CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 276 - 283
  • [9] Evolutionary Algorithms for Overlapping Correlation Clustering
    Andrade, Carlos E.
    Resende, Mauricio G. C.
    Karloff, Howard J.
    Miyazawa, Flavio K.
    [J]. GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 405 - 412
  • [10] Fast Evolutionary Algorithms for Relational Clustering
    Horta, Danilo
    Campello, Ricardo J. G. B.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 1456 - 1462