We showed the existence of non-radial solutions of the equation Delta u - Delta u + lambda u(q) = 0 on the round sphere S-m, for q < (m + 2)/(m + 2), and study the number of such solutions in terms of lambda. We show that for any isoparametric hypersurface M subset of S-m there are solutions such that M is a regular level set (and the number of such solutions increases with lambda). We also show similar results for isoparametric hypersurfaces in general Riemannian manifolds. These solutions give multiplicity results for metrics of constant scalar curvature on conformal classes of Riemannian products.
机构:
Cent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Cent China Normal Univ, Hubei Key Lab Math Sci, 152 Luoyu Rd, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Deng, Qintao
Gu, Huiling
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China
Gu, Huiling
Wei, Qiaoyu
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R ChinaCent China Normal Univ, Sch Math & Stat, 152 Luoyu Rd, Wuhan 430079, Peoples R China