Reconfigurable Terahertz Metasurface Pure Phase Holograms

被引:101
|
作者
Guo, Jinying [1 ,2 ,3 ,4 ]
Wang, Teng [1 ,2 ]
Zhao, Huan [1 ,2 ]
Wang, Xinke [1 ,2 ]
Feng, Shengfei [1 ,2 ]
Han, Peng [1 ,2 ]
Sun, Wenfeng [1 ,2 ]
Ye, Jiasheng [1 ,2 ]
Situ, Guohai [3 ,4 ]
Chen, Hou-Tong [5 ]
Zhang, Yan [1 ,2 ]
机构
[1] Capital Normal Univ, Dept Phys, Beijing Key Lab Metamat & Devices, Key Lab Terahertz Optoelect,Minist Educ, Beijing 100048, Peoples R China
[2] Beijing Adv Innovat Ctr Imaging Technol, Beijing 100048, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai 201800, Peoples R China
[4] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[5] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
基金
中国国家自然科学基金;
关键词
holograms; optical pump; phase modulation; reconfigurable metasurfaces; terahertz;
D O I
10.1002/adom.201801696
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Terahertz (THz) radiation has many potential applications. However, comparing with the rapid development of THz sources and detectors, functional devices for THz modulation, especially the spatial modulation devices, are still insufficient. Here, a novel approach for generating arbitrary wavefronts of a THz beam is presented. By dynamically creating metasurface structures through illuminating a thin silicon wafer with femtosecond laser, which is spatially modulated, an array of reconfigurable subwavelength resonators is generated. The wavefront of the THz beam is then determined by forming spatial profiles of the Pancharatnam-Berry scattering phase by dynamically controlling the resonator orientation. Proof-of-concept experiments demonstrate that streaming holographic images and lenses of variable focal length can be realized in real time. The reconfigurable scheme demonstrated here is convenient and fast, and may lead to advances in a host of THz applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Dynamically reconfigurable high-efficiency terahertz metasurface holograms
    Hu, Mengyuan
    Tian, Zhen
    [J]. EPJ APPLIED METAMATERIALS, 2021, 8
  • [2] Reconfigurable Metasurface for Beamforming in Terahertz Band
    Wang, Zhixia
    Zheng, Shilie
    Xu, Shengyang
    Xiao, Zhicheng
    Hui, Xiaonan
    Zhang, Xianmin
    [J]. 2022 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS, IMWS-AMP, 2022,
  • [3] Terahertz phase modulator based on a metal-VO2 reconfigurable metasurface
    Zhou, Wen
    Jiang, Mingzhu
    Hu, Fangrong
    Gong, Yumin
    Zhang, Longhui
    Zeng, Lizhen
    Jiang, Wenying
    LI, Dongxia
    Wang, Hong
    Liu, Wentao
    Lin, Shangjun
    Hou, Xuehe
    [J]. APPLIED OPTICS, 2023, 62 (04) : 1103 - 1108
  • [4] Electrically reconfigurable terahertz digital metasurface based on vanadium dioxide phase transition
    Deng, Qinling
    Song, Ruirui
    Tang, Yan
    Zhou, Shaolin
    [J]. AOPC 2021: MICRO-OPTICS AND MOEMS, 2021, 12066
  • [5] Reconfigurable Terahertz Holograms with Cascaded Diffractive Optical Elements
    Jia, Wei
    Lin, Dajun
    Sensale-Rodriguez, Berardi
    [J]. 2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ, 2023,
  • [6] Beam-Reconfigurable Terahertz Metasurface with Optical Activations
    Wong, Hang
    Lin, Quan-Wei
    [J]. 2022 14TH GLOBAL SYMPOSIUM ON MILLIMETER-WAVES & TERAHERTZ (GSMM 2022), 2022, : 50 - 52
  • [7] Reconfigurable three multi-mode terahertz metasurface
    Li, Jiu-sheng
    Ren, Jia-hui
    Xiong, Ri-hui
    [J]. OPTICS EXPRESS, 2023, 31 (22) : 35583 - 35593
  • [8] Reconfigurable Holograms Using VO2-Based Tunable Metasurface
    Haimov, Tamar
    Aydin, Koray
    Scheuer, Jacob
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (01)
  • [9] Reconfigurable Holograms Using VO2-Based Tunable Metasurface
    Haimov, Tamar
    Scheuer, Jacob
    [J]. 2020 IEEE PHOTONICS CONFERENCE (IPC), 2020,
  • [10] Electrically Triggered VO2 Reconfigurable Metasurface for Amplitude and Phase Modulation of Terahertz Wave
    Jiang, Mingzhu
    Hu, Fangrong
    Zhang, Longhui
    Quan, Baogang
    Xu, Weilin
    Du, Haotian
    Xie, Duan
    Chen, Ying
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (11) : 3488 - 3494