Cenozoic Evolution of Sediments and Climate Change and Response to Tectonic Uplift of the Northeastern Tibetan Plateau

被引:9
|
作者
Liang Xia [1 ]
Ji Junliang [2 ,3 ]
Lu Jingfang [4 ]
Ke Xue [5 ]
Ai Keke [2 ,3 ]
Xu Yadong [2 ,3 ]
Song Bowen [6 ]
机构
[1] Chinese Acad Geol Sci, Inst Geomech, Beijing 100081, Peoples R China
[2] China Univ Geosci, Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Sch Earth Sci, Wuhan 430074, Peoples R China
[4] China Geol Survey, Inst Oceanol, Qingdao 266003, Peoples R China
[5] China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Peoples R China
[6] China Univ Geosci, Inst Geol Survey, Wuhan 430074, Peoples R China
关键词
Magnetostratigraphy; tectonic uplift; sedimentation rates; paleoclimate; Tibetan Plateau; APATITE FISSION-TRACK; RESOLUTION MAGNETO STRATIGRAPHY; NORTHERN QAIDAM BASIN; QINGHAI PROVINCE; XINING BASIN; RANGE GROWTH; QILIAN SHAN; MAGNETOSTRATIGRAPHY; EASTERN; MA;
D O I
10.1111/1755-6724.12248
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Through a comprehensive study of magnetostratigraphy and sedimentology of several basins in the northeastern Tibetan Plateau, we reveal that the study area mainly experienced six tectonic uplift stages at approximately 52 Ma, 34-30 Ma, 24-20 Ma, 16-12 Ma, 8-6 Ma, and 3.6-2.6 Ma. Comprehensive analyses of pollen assemblages from the Qaidam, Linxia, Xining, and West Jiuquan Basins show that the northeastern Tibetan Plateau has undergone six major changes in vegetation types and climate: 50-40 Ma for the warm-humid forest vegetation, 40-23 Ma for the warm-arid and temperate-arid forest steppe vegetation, 23-18.6 Ma for the warm-humid and temperate-humid forest vegetation, 18.6-8.5 Ma for the warm-humid and cool-humid forest steppe vegetation, 8.6-5 Ma for the temperate sub-humid savanna steppe vegetation, and 5-1.8 Ma for the cold-arid steppe vegetation. Comprehensive comparisons of tectonic uplift events inferred from sedimentary records, climatic changes inferred from pollen, and global climate changes show that in the northeastern Tibetan Plateau the climate in the Paleogene at low altitude was mainly controlled by the global climate change, while that in the Neogene interval with high altitude landscapes of mountains and basins is more controlled by altitude and morphology.
引用
收藏
页码:949 / 962
页数:14
相关论文
共 50 条
  • [1] Cenozoic Evolution of Sediments and Climate Change and Response to Tectonic Uplift of the Northeastern Tibetan Plateau
    LIANG Xia
    JI Junliang
    LU Jingfang
    KE Xue
    AI Keke
    XU Yadong
    SONG Bowen
    Acta Geologica Sinica(English Edition), 2014, 88 (03) : 949 - 962
  • [2] Cenozoic Evolution of Sediments and Climate Change and Response to Tectonic Uplift of the Northeastern Tibetan Plateau
    LIANG Xia
    JI Junliang
    LU Jingfang
    KE Xue
    AI Keke
    XU Yadong
    SONG Bowen
    Acta Geologica Sinica(English Edition), 2014, (03) : 949 - 962
  • [3] Cenozoic uplift of the Tibetan Plateau on the Global Response to Climate Change
    Song, Eping
    Zhang, Kexin
    Sun, Yi
    Lu, Yanqiu
    Hong, Hanlie
    ENVIRONMENTAL ENGINEERING, PTS 1-4, 2014, 864-867 : 2719 - +
  • [4] Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau
    Dai, Shuang
    Fang, Xiaomin
    Dupont-Nivet, Guillaume
    Song, Chunhui
    Gao, Junping
    Krijgsman, Wout
    Langereis, Cor
    Zhang, Weilin
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2006, 111 (B11)
  • [5] Cenozoic volcanism and tectonic evolution of the Tibetan plateau
    Xia, Linqi
    Li, Xiangmin
    Ma, Zhongping
    Xu, Xueyi
    Xia, Zuchun
    GONDWANA RESEARCH, 2011, 19 (04) : 850 - 866
  • [6] LATE CENOZOIC PLATEAU UPLIFT AND CLIMATE CHANGE
    RUDDIMAN, WF
    KUTZBACH, JE
    TRANSACTIONS OF THE ROYAL SOCIETY OF EDINBURGH-EARTH SCIENCES, 1990, 81 : 301 - 314
  • [7] Coupling of tectonic uplift and climate change as influences on drainage evolution: A case study at the NE margin of the Tibetan Plateau
    Zhang, Jian
    Geng, Haopeng
    Pan, Baotian
    Nie, Junsheng
    Hu, Xiaofei
    Zhao, Qiming
    Chen, Dianbao
    Xie, Rong
    CATENA, 2022, 216
  • [8] Cenozoic uplift of the Tibetan Plateau:Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin
    Yadong WangaJianjing ZhengaWeilin ZhangbShiyuan Lic Xingwang LiuaXin YangaYuhu Liud a Key Laboratory of Petroleum Resources ResearchInstitute of Geology and GeophysicsChinese Academy of SciencesDonggang West Road NoLanzhou China b Center for Basin Resource and EnvironmentInstitute of Tibetan Plateau ResearchChinese Academy of SciencesPost Box Beilin North Street Beijing China c Research Institute of Petroleum Exploration and DevelopmentPetroChina Qinghai Oilfield CompanyDunhuang China d Exploration and Development Academy of Northeast Petroleum BranchChina Petroleum Chemical CorporationChangchun China
    Geoscience Frontiers, 2012, 3 (02) : 175 - 187
  • [9] Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin
    Wang, Yadong
    Zheng, Jianjing
    Zhang, Weilin
    Li, Shiyuan
    Liu, Xingwang
    Yang, Xin
    Liu, Yuhu
    GEOSCIENCE FRONTIERS, 2012, 3 (02) : 175 - 187
  • [10] Evolution of tectonic lithofacies paleogeography of Cenozoic of Qinghai-Tibet plateau and its response to uplift of the plateau
    Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan 430074, China
    不详
    不详
    不详
    不详
    Diqiu Kexue Zhongguo Dizhi Daxue Xuebao, 5 (697-712): : 697 - 712