Synthesis of zinc oxide nanostructures during zinc oxidation by sub- and supercritical water

被引:15
|
作者
Vostrikov, A. A. [1 ]
Shishkin, A. V. [1 ]
Timoshenko, N. I. [1 ]
机构
[1] Russian Acad Sci, Kutateladze Inst Thermophys, Siberian Div, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063785007010099
中图分类号
O59 [应用物理学];
学科分类号
摘要
Solid zinc (Zn)(S) and liquid zinc (Zn)(L) are oxidized by water with the formation of zinc oxide (ZnO) nanostructures and the evolution of hydrogen. The maximum rate of this process, called chemical supercondensation by water (CSW), is realized on approaching the melting temperature of zinc from the left and right with increasing density of supercritical water. The CSW process begins with the formation of (ZnO) (n) clusters via the reaction (Zn)(S,L) + nH(2)O = [(Zn)(S,L) center dot (ZnO) (n) ] + nH(2), followed by their subsequent growth at n > 7 in the exothermal process of epitaxy on (Zn)(S) and coagulation of (ZnO) (n) in (Zn)(L). The CSW of (Zn)(S) leads predominantly to the formation of nanowires and nanorods, while the CSW of (Zn)(L) practically always proceeds with the formation of nanoparticles. The rate of (Zn)(S) oxidation increases with the thickness of a layer converted into ZnO. This is related to the self-heating and local melting of (Zn)(S) in the course of CSW. The complete CSR of (Zn)(S) plates and cylinders results in the formation of highly porous nanostructural ceramics.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 50 条
  • [1] Synthesis of zinc oxide nanostructures during zinc oxidation by sub-and supercritical water
    A. A. Vostrikov
    A. V. Shishkin
    N. I. Timoshenko
    [J]. Technical Physics Letters, 2007, 33 : 30 - 34
  • [2] Mechanism and Kinetics of Zinc Oxidation by Sub- and Supercritical Water
    Vostrikov, A. A.
    Fedyaeva, O. N.
    Shishkin, A. V.
    Sokol, M. Ya.
    [J]. IFOST 2008: PROCEEDING OF THE THIRD INTERNATIONAL FORUM ON STRATEGIC TECHNOLOGIES, 2008, : 226 - 230
  • [3] Recrystallization of Zinc Oxide in a Sub- and Supercritical Water Medium
    Ivakin, Yu. D.
    Danchevskaya, M. N.
    Muravieva, G. P.
    [J]. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 13 (07) : 1189 - 1200
  • [4] Recrystallization of Zinc Oxide in a Sub- and Supercritical Water Medium
    Yu. D. Ivakin
    M. N. Danchevskaya
    G. P. Muravieva
    [J]. Russian Journal of Physical Chemistry B, 2019, 13 : 1189 - 1200
  • [5] The partial oxidation of isobutene in sub- and supercritical water
    Richter, T
    Vogel, H
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2003, 26 (06) : 688 - 690
  • [6] Thiodiglycol hydrolysis and oxidation in sub- and supercritical water
    Lachance, R
    Paschkewitz, J
    DiNaro, J
    Tester, JW
    [J]. JOURNAL OF SUPERCRITICAL FLUIDS, 1999, 16 (02): : 133 - 147
  • [7] Partial oxidation of propylene in sub- and supercritical water
    Bröll, D
    Krämer, A
    Vogel, H
    [J]. CHEMICAL ENGINEERING & TECHNOLOGY, 2003, 26 (04) : 424 - 428
  • [8] Partial oxidation of propane in sub- and supercritical water
    Armbruster, U
    Martin, A
    Krepel, A
    [J]. JOURNAL OF SUPERCRITICAL FLUIDS, 2001, 21 (03): : 233 - 243
  • [9] Continuous synthesis of tin and indium oxide nanoparticles in sub- and supercritical water
    Fang, Zhen
    Assaaoudi, Hassane
    Guthrie, Roderick I. L.
    Kozinski, Janusz A.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (08) : 2367 - 2371
  • [10] Continuous synthesis of zinc oxide nanoparticles in supercritical water
    Sue, K
    Murata, K
    Kimura, K
    Arai, K
    [J]. GREEN CHEMISTRY, 2003, 5 (05) : 659 - 662