Achievable accuracy of parameter estimation for multidimensional NMR experiments

被引:13
|
作者
Ober, RJ [1 ]
Lin, ZP
Ye, H
Ward, ES
机构
[1] Univ Texas, Eric Jonsson Sch Elect Engn & Comp Sci, Ctr Syst Commun & Signal Proc EC33, Richardson, TX 75083 USA
[2] Univ Texas, SW Med Ctr, Ctr Canc Immunobiol NB9 106, Dallas, TX 75235 USA
[3] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[4] Univ Texas, Ctr Immunol, Dallas, TX 75235 USA
关键词
nuclear magnetic resonance (NMR) spectroscopy; Cramer-Rao lower bound (CRLB); Fisher information matrix; nonlinear least-squares estimation; nonuniform sampling; nonuniform averaging; experimental design;
D O I
10.1006/jmre.2002.2560
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A fundamental issue in NMR spectroscopy is the estimation of parameters such as the Larmor frequencies of nuclei, J coupling constants, and relaxation rates. The Cramer-Rao lower bound provides a method to assess the best achievable accuracy of parameter estimates resulting from an unbiased estimation procedure. We show how the Cramer-Rao lower bound can be calculated for data obtained from multidimensional NMR experiments. The Cramer-Rao lower bound is compared to the variance of parameter estimates for simulated data using a least-squares estimation procedure. It is also shown how our results on the Cramer-Rao lower bound can be used to analyze whether an experimental design can be improved to provide experimental data which can result in parameter estimates with higher accuracy. The concept of nonuniform averaging in the indirect dimension is introduced and studied in connection with nonuniform sampling of the data. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] ACHIEVABLE ACCURACY IN PARAMETER ESTIMATION OF A GAUSSIAN PLUME DISPERSION MODEL
    Ristic, Branko
    Gunatilaka, Ajith
    Gailis, Ralph
    [J]. 2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 209 - 212
  • [2] Achievable accuracy in Gaussian plume parameter estimation using a network of binary sensors
    Ristic, Branko
    Gunatilaka, Ajith
    Gailis, Ralph
    [J]. INFORMATION FUSION, 2015, 25 : 42 - 48
  • [3] Accuracy Enhancement of Parameter Estimation for Noisy NMR Spectra
    Kang, S.
    Kim, K.
    Fiat, D.
    [J]. APPLIED MAGNETIC RESONANCE, 1991, 2 (04) : 695 - 714
  • [4] ESTIMATION OF A MULTIDIMENSIONAL PARAMETER
    IBRAGIMOV, IA
    KHASMINSKII, RZ
    [J]. THEORY OF PROBABILITY AND ITS APPLICATIONS, 1977, 22 (03) : 640 - 641
  • [5] ACHIEVABLE ACCURACY OF STRUCTURAL SYSTEM PARAMETER ESTIMATES
    GERSCH, W
    [J]. JOURNAL OF SOUND AND VIBRATION, 1974, 34 (01) : 63 - 79
  • [6] THEORY AND APPLICATION OF THE MAXIMUM-LIKELIHOOD PRINCIPLE TO NMR PARAMETER-ESTIMATION OF MULTIDIMENSIONAL NMR DATA
    CHYLLA, RA
    MARKLEY, JL
    [J]. JOURNAL OF BIOMOLECULAR NMR, 1995, 5 (03) : 245 - 258
  • [7] MULTIDIMENSIONAL NMR EXPERIMENTS WITH IMPROVED RESOLUTION
    MADSEN, JC
    SORENSEN, OW
    [J]. JOURNAL OF MAGNETIC RESONANCE, 1992, 100 (02): : 431 - 436
  • [8] Time-domain signal modelling in multidimensional NMR experiments for estimation of relaxation parameters
    Matviychuk, Yevgen
    Bostock, Mark J.
    Nietlispach, Daniel
    Holland, Daniel J.
    [J]. JOURNAL OF BIOMOLECULAR NMR, 2019, 73 (3-4) : 93 - 104
  • [9] Time-domain signal modelling in multidimensional NMR experiments for estimation of relaxation parameters
    Yevgen Matviychuk
    Mark J. Bostock
    Daniel Nietlispach
    Daniel J. Holland
    [J]. Journal of Biomolecular NMR, 2019, 73 : 93 - 104
  • [10] Virtual multidimensional structure-based subspace estimation to improve parameter estimation accuracy in harmonic retrieval problems
    Zhu, Yutang
    Zhao, Yongbo
    Shui, Penglang
    [J]. IET RADAR SONAR AND NAVIGATION, 2017, 11 (05): : 838 - 846