Stability Anomalies of Some Jacobian-Free Iterative Methods of High Order of Convergence

被引:0
|
作者
Cordero, Alicia [1 ]
Maimo, Javier G. [2 ]
Torregrosa, Juan R. [1 ]
Vassileva, Maria P. [2 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, E-46022 Valencia, Spain
[2] Inst Tecnol Santo Domingo, Avda Proceres 49, Santo Domingo 10602, Dominican Rep
关键词
nonlinear systems; real multidimensional dynamics; stability; SOLVING SYSTEMS; NEWTON METHOD; FAMILY;
D O I
10.3390/axioms8020051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Stability Analysis of Jacobian-Free Newton's Iterative Method
    Amiri, Reza
    Cordero, Alicia
    Darvishi, Mohammad Taghi
    Torregrosa, Juan R.
    ALGORITHMS, 2019, 12 (11)
  • [2] Preserving the order of convergence: Low-complexity Jacobian-free iterative schemes for solving nonlinear systems
    Amiri, A. R.
    Cordero, A.
    Darvishi, M. T.
    Torregrosa, J. R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 87 - 97
  • [3] A New High-Order Jacobian-Free Iterative Method with Memory for Solving Nonlinear Systems
    Behl, Ramandeep
    Cordero, Alicia
    Torregrosa, Juan R.
    Bhalla, Sonia
    MATHEMATICS, 2021, 9 (17)
  • [4] Jacobian-free High Order Local Linearization methods for large systems of initial value problems
    Naranjo-Noda, F. S.
    Jimenez, J. C.
    APPLIED NUMERICAL MATHEMATICS, 2023, 187 : 158 - 175
  • [5] Efficient parametric family of fourth-order Jacobian-free iterative vectorial schemes
    Cordero, Alicia
    Rojas-Hiciano, Renso V.
    Torregrosa, Juan R.
    Triguero-Navarro, Paula
    NUMERICAL ALGORITHMS, 2024, 97 (04) : 2011 - 2029
  • [6] High order family of multivariate iterative methods: Convergence and stability
    Behl, Ramandeep
    Cordero, Alicia
    Torregrosa, Juan R.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 405
  • [7] Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences
    A. R. Amiri
    Alicia Cordero
    M. T. Darvishi
    Juan R. Torregrosa
    Journal of Mathematical Chemistry, 2019, 57 : 1344 - 1373
  • [8] Stability analysis of Jacobian-free iterative methods for solving nonlinear systems by using families of mth power divided differences
    Amiri, A. R.
    Cordero, Alicia
    Darvishi, M. T.
    Torregrosa, Juan R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2019, 57 (05) : 1344 - 1373
  • [9] Derivative free iterative methods with memory of arbitrary high convergence order
    Gustavo Fernández-Torres
    Numerical Algorithms, 2014, 67 : 565 - 580
  • [10] Derivative free iterative methods with memory of arbitrary high convergence order
    Fernandez-Torres, Gustavo
    NUMERICAL ALGORITHMS, 2014, 67 (03) : 565 - 580