ANALYSIS OF FINITE ELEMENT APPROXIMATIONS OF STOKES EQUATIONS WITH NONSMOOTH DATA

被引:3
|
作者
Duran, Ricardo [1 ,2 ]
Gastaldi, Lucia [3 ]
Lombardi, Ariel [4 ,5 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, IMAS, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Brescia, DICATAM, I-25123 Brescia, Italy
[4] Univ Nacl Rosario, Fac Ciencias Exactas Ingn & Agrimensura, Dept Matemat, RA-2000 Rosario, Argentina
[5] Consejo Nacl Invest Cient & Tecn, RA-2000 Rosario, Argentina
关键词
Stokes equations; finite elements; nonsmooth data; a posteriori error analysis; DIRICHLET PROBLEM; POISSON EQUATION; BOUNDARY DATA; REGULARITY; INEQUALITIES; SYSTEM;
D O I
10.1137/19M1305872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the finite element approximation of the Stokes equations with nonsmooth Dirichlet boundary data. To define the discrete solution, we first approximate the boundary datum by a smooth one and then apply a standard finite element method to the regularized problem. We prove almost optimal order error estimates for two regularization procedures in the case of general data in fractional order Sobolev spaces and for the Lagrange interpolation (with appropriate modifications at the discontinuities) for piecewise smooth data. Our results apply in particular to the classic lid-driven cavity problem, improving the error estimates obtained in Cai and Wang [Math. Comp., 78 (2009), pp. 771-787]. Finally, we introduce and analyze an a posteriori error estimator. We prove its reliability and efficiency and show some numerical examples which suggest that optimal order of convergence is obtained by an adaptive procedure based on our estimator.
引用
收藏
页码:3309 / 3331
页数:23
相关论文
共 50 条