Inference of meteoroid characteristics using a genetic algorithm

被引:10
|
作者
Tarano, Ana Maria [1 ,4 ]
Wheeler, Lorien F. [3 ]
Close, Sigrid [4 ]
Mathias, Donovan L. [2 ]
机构
[1] NASA, Ames Res Ctr, Sci & Technol Corp, MS 258, Moffett Field, CA 94035 USA
[2] NASA, Ames Res Ctr, MS 258-5, Moffett Field, CA 94035 USA
[3] NASA, Ames Res Ctr, Redline Performance Solut, MS 258-6, Moffett Field, CA 94035 USA
[4] Stanford Univ, Stanford, CA 94305 USA
关键词
Asteroid; Genetic algorithm; Meteoroid; Impact risk; Asteroid characterization; LOST CITY; EARTHS ATMOSPHERE; FRAGMENTATION; CHELYABINSK; MODEL; OPTIMIZATION; RADIATION; AIRBURST; RECOVERY; ABLATION;
D O I
10.1016/j.icarus.2019.04.002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A methodology is introduced to optimize and extend the inference of pre-entry size, density, strength, and mass of asteroids based on observed light curves. In this development study, a genetic algorithm (GA) approach is coupled with the fragment-cloud model (FCM) to efficiently evaluate entry and breakup for numerous potential asteroid property combinations and determine which case best matches the observed data. FCM produces energy deposition curves based on assumed pre-entry conditions, and the GA finds values for these inputs that minimize an objective function characterizing the difference between the FCM curve and a target curve. We present an overview of the GA approach, and then demonstrate its capability to infer pre-entry properties for three well-characterized events: Chelyabinsk, Lost City, and Benesov. In all cases, our initial mass and size estimates were within the range of published values.
引用
收藏
页码:270 / 281
页数:12
相关论文
共 50 条
  • [1] Haplotype Inference Using A Genetic Algorithm
    Che, Dongsheng
    Tang, Haibao
    Song, Yinglei
    [J]. CIBCB: 2009 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2009, : 31 - +
  • [2] Inference of Genetic Networks Using an Evolutionary Algorithm
    Kimura, Shuhei
    [J]. DESIGN BY EVOLUTION: ADVANCES IN EVOLUTIONARY DESIGN, 2008, : 31 - 51
  • [3] Ancestral Genome Inference Using a Genetic Algorithm Approach
    Gao, Nan
    Yang, Ning
    Tang, Jijun
    [J]. PLOS ONE, 2013, 8 (05):
  • [4] OPTIMIZATION OF FUZZY INFERENCE SYSTEM USING MODIFIED GENETIC ALGORITHM
    Jamwal, Prashant K.
    Xie, Sheng Q.
    Aw, K. C.
    [J]. 2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 195 - 199
  • [5] Inference of Genetic Regulatory Networks Using an Estimation of Distribution Algorithm
    Salva, Thyago
    Emmendorfer, Leonardo R.
    Werhli, Adriano V.
    [J]. ADVANCES IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2013, 8213 : 148 - 159
  • [6] Hypoglycemia Detection using Fuzzy Inference System with Genetic Algorithm
    Ling, Sai Ho
    Nguyen, Hung T.
    Leung, Frank Hung Fat
    [J]. IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ 2011), 2011, : 2225 - 2231
  • [7] An optimization technique using the characteristics of genetic algorithm
    Kim, G. -H.
    Lee, Y. -S.
    [J]. MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2008, 39 (02) : 182 - 186
  • [8] Partial abductive inference in Bayesian belief networks using a genetic algorithm
    de Campos, LM
    Gámez, JA
    Moral, S
    [J]. PATTERN RECOGNITION LETTERS, 1999, 20 (11-13) : 1211 - 1217
  • [9] SIRMs connected fuzzy inference model tuning using genetic algorithm
    Cavalcante, C
    Hirota, K
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AT THE IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE - PROCEEDINGS, VOL 1-2, 1998, : 1277 - 1280
  • [10] The fuzzy inference based on genetic algorithm
    Zhang, JH
    Jiang, Q
    [J]. DCABES 2004, Proceedings, Vols, 1 and 2, 2004, : 342 - 344