KNCR: Knowledge-Aware Neural Collaborative Ranking for Recommender Systems

被引:3
|
作者
Huang, Chen [1 ]
Gan, Zhongyuan [1 ]
Ye, Feng [2 ]
Wang, Pan [1 ]
Zhang, Moxuan [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Modern Posts, Nanjing, Peoples R China
[2] Univ Dayton, Dept Elect & Comp Engn, Dayton, OH 45469 USA
[3] Jinling Inst Technol, Sch Int Educ, Nanjing, Peoples R China
基金
美国国家科学基金会;
关键词
implicit feedback; knowledge graph representation learning; collaborative filtering; deep learning; recommendation system;
D O I
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recommendation system is designed to generate a personalized sorting list of items that users may be interested in. With the unprecedented success of deep learning in the field of Computer Vision and Voice recognition, how to reasonably introduce deep learning into the recommendation system has also aroused the thinking of researchers. Knowledge graph, as a new research hotspot, contains abundant new auxiliary information of entity semantic association. The researchers found that when the knowledge map is introduced into the recommendation system, it can reduce the data sparsity and cold start problem, and it is a good assistant for neural network in the recommendation system. In the traditional recommendation system, because it relies on the matrix decomposition and collaborative filtering algorithm for recommendation, there will inevitably be problems of cold start and data sparsity. The problem of data sparsity often refers to the large number of users and items in platforms such as large-scale e-commerce, but in the user-item matrix obtained, the average number of users interacting with the project is small, which will cause the user-item matrix to be sparse. The cold start problem refers to how to make personalized recommendation for new users without a large number of user data. The sparsity of data will eventually lead to the inability to capture the relationship between different users and different items, thus reducing the accuracy of the recommendation system. As an implicit expression, implicit feedback can get users' preferences in many ways, rather than limited to the display of expression preferences, so as to enrich the user-item matrix and alleviate the problem of data sparsity. Neural network can analyze the relationship between things from a higher dimension, and improve the data sparsity. The knowledge graph contains the fact relationship of a thing in the real world, which is equivalent to providing additional information dimension for the data, so as to solve the cold start problem to a certain extent. In this paper, we propose an enhanced collaborative filtering recommendation algorithm based on implicit feedback and representation learning of the knowledge graph combined with neural network (KNCR). KNCR can bridge intrinsic relationship between items that are not considered by the traditional collaborative filtering algorithm, and effectively solve the problems of sparse scoring matrix and cold start. The experimental results from the real-world public dataset demonstrate that KNCR can improve the performance of personalized recommendations.
引用
收藏
页码:339 / 344
页数:6
相关论文
共 50 条
  • [1] Knowledge-aware Graph Collaborative Filtering for Recommender Systems
    Cai, Minghong
    Zhu, Jinghua
    [J]. 2019 15TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2019), 2019, : 7 - 12
  • [2] Knowledge-Aware Hypergraph Neural Network for Recommender Systems
    Liu, Binghao
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Xian, Xuefeng
    Liu, Yanchi
    Sheng, Victor S.
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT III, 2021, 12683 : 132 - 147
  • [3] CKAN: Collaborative Knowledge-aware Attentive Network for Recommender Systems
    Wang, Ze
    Lin, Guangyan
    Tan, Huobin
    Chen, Qinghong
    Liu, Xiyang
    [J]. PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 219 - 228
  • [4] CKEN: Collaborative Knowledge-Aware Enhanced Network for Recommender Systems
    Zeng, Wei
    Qin, Jiwei
    Wang, Xiaole
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT II, 2022, 13530 : 769 - 784
  • [5] Knowledge-aware and Conversational Recommender Systems
    Anelli, Vito Walter
    Basile, Pierpaolo
    Bridge, Derek
    Di Noia, Tommaso
    Lops, Pasquale
    Musto, Cataldo
    Narducci, Fedelucio
    Zanker, Markus
    [J]. 12TH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS), 2018, : 521 - 522
  • [6] Accountable Knowledge-aware Recommender Systems
    Lops, Pasquale
    Musto, Cataldo
    Polignano, Marco
    [J]. 2023 PROCEEDINGS OF THE 31ST ACM CONFERENCE ON USER MODELING, ADAPTATION AND PERSONALIZATION, UMAP 2023, 2023, : 306 - 308
  • [7] A survey on knowledge-aware news recommender systems
    Iana, Andreea
    Alam, Mehwish
    Paulheim, Heiko
    [J]. SEMANTIC WEB, 2024, 15 (01) : 21 - 82
  • [8] Knowledge-aware Autoencoders for Explainable Recommender Systems
    Bellini, Vito
    Schiavone, Angelo
    Di Noia, Tommaso
    Ragone, Azzurra
    Di Sciascio, Eugenio
    [J]. PROCEEDINGS OF THE 3RD WORKSHOP ON DEEP LEARNING FOR RECOMMENDER SYSTEMS (DLRS), 2018, : 24 - 31
  • [9] Knowledge-aware Graph Neural Networks with Label Smoothness Regularization for Recommender Systems
    Wang, Hongwei
    Zhang, Fuzheng
    Zhang, Mengdi
    Leskovec, Jure
    Zhao, Miao
    Li, Wenjie
    Wang, Zhongyuan
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 968 - 977
  • [10] Fourth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS)
    Anelli, Vito Walter
    Basile, Pierpaolo
    de Melo, Gerard
    Donini, Francesco M.
    Ferrara, Antonio
    Musto, Cataldo
    Narducci, Fedelucio
    Ragone, Azzurra
    Zanker, Markus
    [J]. PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 663 - 666