Handling Oversampling in Dynamic Networks Using Link Prediction

被引:5
|
作者
Fish, Benjamin [1 ,2 ]
Caceres, Rajmonda S. [2 ]
机构
[1] Univ Illinois, Chicago, IL 60607 USA
[2] MIT, Lincoln Lab, Lexington, MA 02173 USA
关键词
D O I
10.1007/978-3-319-23525-7_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Oversampling is a common characteristic of data representing dynamic networks. It introduces noise into representations of dynamic networks, but there has been little work so far to compensate for it. Oversampling can affect the quality of many important algorithmic problems on dynamic networks, including link prediction. Link prediction seeks to predict edges that will be added to the network given previous snapshots. We show that not only does oversampling affect the quality of link prediction, but that we can use link prediction to recover from the effects of oversampling. We also introduce a novel generative model of noise in dynamic networks that represents oversampling. We demonstrate the results of our approach on both synthetic and real-world data.
引用
收藏
页码:671 / 686
页数:16
相关论文
共 50 条
  • [1] Link Prediction and Unlink Prediction on Dynamic Networks
    Muro, Christina
    Li, Boyu
    He, Kun
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (02) : 590 - 601
  • [2] Enhancing link prediction in dynamic networks using content aggregation
    Bouakkaz, Mustapha
    Ouinten, Youcef
    Loudcher, Sabine
    Fournier-Viger, Philippe
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2021, 24 (04): : 3055 - 3063
  • [3] Enhancing link prediction in dynamic networks using content aggregation
    Mustapha Bouakkaz
    Youcef Ouinten
    Sabine Loudcher
    Philippe Fournier-Viger
    Cluster Computing, 2021, 24 : 3055 - 3063
  • [4] Link prediction in dynamic networks using random dot product graphs
    Francesco Sanna Passino
    Anna S. Bertiger
    Joshua C. Neil
    Nicholas A. Heard
    Data Mining and Knowledge Discovery, 2021, 35 : 2168 - 2199
  • [5] Deep Learning for Link Prediction in Dynamic Networks Using Weak Estimators
    Chiu, Carter
    Zhan, Justin
    IEEE ACCESS, 2018, 6 : 35937 - 35945
  • [6] Link prediction in dynamic networks using random dot product graphs
    Sanna Passino, Francesco
    Bertiger, Anna S.
    Neil, Joshua C.
    Heard, Nicholas A.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (05) : 2168 - 2199
  • [7] Link prediction in dynamic networks using random dot product graphs
    Sanna Passino, Francesco (f.sannapassino@imperial.ac.uk), 1600, Springer (35):
  • [8] A Framework for Dynamic Link Prediction in Heterogeneous Networks
    Aggarwal, Charu C.
    Xie, Yan
    Yu, Philip S.
    STATISTICAL ANALYSIS AND DATA MINING, 2014, 7 (01) : 14 - 33
  • [9] Link Prediction on Dynamic Heterogeneous Information Networks
    Kong, Chao
    Li, Hao
    Zhang, Liping
    Zhu, Haibei
    Liu, Tao
    COMPUTATIONAL DATA AND SOCIAL NETWORKS, 2019, 11917 : 339 - 350
  • [10] Streaming Link Prediction on Dynamic Attributed Networks
    Li, Jundong
    Cheng, Kewei
    Wu, Liang
    Liu, Huan
    WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 369 - 377