Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

被引:6
|
作者
Blair, Enrique P. [1 ]
Toth, Geza [2 ,3 ,4 ]
Lent, Craig S. [5 ,6 ]
机构
[1] Baylor Univ, Elect & Comp Engn Dept, Waco, TX 76798 USA
[2] Univ Basque Country, UPV EHU, Dept Theoret Phys, POB 644, E-48080 Bilbao, Spain
[3] Basque Fdn Sci, Ikerbasque, E-48013 Bilbao, Spain
[4] Hungarian Acad Sci, Wigner Res Ctr Phys, POB 49, H-1525 Budapest, Hungary
[5] Univ Notre Dame, Dept Elect Engn, Notre Dame, IN 46556 USA
[6] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
quantum entanglement; quantum decoherence; quantum disentanglement; STATE; ATOMS; LIMIT; LOCALIZATION; INEQUALITY; SYSTEM; SPACE;
D O I
10.1088/1361-648X/aab98d
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunkovic-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Local measurement of the entanglement between two quantum-dot qubits
    Liu, Jin
    Jiang, Zhao-Tan
    Shao, Bin
    [J]. PHYSICAL REVIEW B, 2009, 79 (11)
  • [2] Dynamics of entanglement between quantum-dot spin-qubits
    Schliemann, J
    Loss, D
    [J]. QUANTUM PHENOMENA IN MESOSCOPIC SYSTEMS, 2003, 151 : 135 - 159
  • [3] Optical detection and storage of entanglement in plasmonically coupled quantum-dot qubits
    Otten, M.
    Gray, S. K.
    Kolmakov, G., V
    [J]. PHYSICAL REVIEW A, 2019, 99 (03)
  • [4] Sensitivity of entanglement decay of quantum-dot spin qubits to the external magnetic field
    Mazurek, Pawel
    Roszak, Katarzyna
    Chhajlany, Ravindra W.
    Horodecki, Pawel
    [J]. PHYSICAL REVIEW A, 2014, 89 (06):
  • [5] Towards quantum teleportation with quantum-dot spin qubits
    Kojima, Yohei
    Nakajima, Takashi
    Noiri, Akito
    Yoneda, Jun
    Otsuka, Tomohiro
    Takeda, Kenta
    Li, Sen
    Bartlett, Stephen D.
    Ludwig, Arne
    Wieck, Andreas Dirk
    Tarucha, Seigo
    [J]. 2019 COMPOUND SEMICONDUCTOR WEEK (CSW), 2019,
  • [6] Anomalous decay of quantum correlations of quantum-dot qubits
    Roszak, Katarzyna
    Mazurek, Pawel
    Horodecki, Pawel
    [J]. PHYSICAL REVIEW A, 2013, 87 (06):
  • [7] Putting a new spin on quantum-dot qubits
    Levi, Barbara Goss
    [J]. PHYSICS TODAY, 2011, 64 (03) : 19 - 22
  • [8] Quantum computation with quantum-dot spin qubits inside a cavity
    Dong, Ping
    Cao, Zhuo-Liang
    [J]. PHYSICS LETTERS A, 2009, 373 (17) : 1527 - 1530
  • [9] Quantum Entanglement and Teleportation of Quantum-Dot States in Microcavities
    Miranowicz, A.
    Ozdemir, S. K.
    Liu, Yu-xi
    Chimczak, G.
    Koashi, M.
    Imoto, N.
    [J]. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2007, 5 : 51 - 59
  • [10] Cluster State Computation with Quantum-Dot Charge Qubits
    Katz, Matthew Lubelski
    Wang, Jingbo
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2010, 2010