A divergent Teichmuller geodesic with uniquely ergodic vertical foliation

被引:4
|
作者
Cheung, Yitwah [1 ]
Masur, Howard
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
[2] Univ Illinois, Dept Math, Chicago, IL 60680 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/BF02771972
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an example of a quadratic differential whose vertical foliation is uniquely ergodic and such that the Teichmuller geodesic determined by the quadratic differential diverges in the moduli space of Riemann surfaces.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] A divergent teichmüller geodesic with uniquely ergodic vertical foliation
    Yitwah Cheung
    Howard Masur
    Israel Journal of Mathematics, 2006, 152 : 1 - 15
  • [2] Limit sets of Teichmuller geodesics with minimal non-uniquely ergodic vertical foliation
    Leininger, Christopher
    Lenzhen, Anna
    Rafi, Kasra
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 737 : 1 - 32
  • [3] Limit sets of Teichmuller geodesics with minimal nonuniquely ergodic vertical foliation, II
    Brock, Jeffrey
    Leininger, Christopher
    Modami, Babak
    Rafi, Kasra
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 758 : 1 - 66
  • [4] Divergent on average directions of Teichmuller geodesic flow
    Apisa, Paul
    Masur, Howard
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (03) : 1007 - 1044
  • [5] THE TEICHMULLER SPACE OF THE HIRSCH FOLIATION
    Alvarez, Sebastien
    Lessa, Pablo
    ANNALES DE L INSTITUT FOURIER, 2018, 68 (01) : 1 - 51
  • [6] THE TEICHMULLER GEODESIC-FLOW
    VEECH, WA
    ANNALS OF MATHEMATICS, 1986, 124 (03) : 441 - 530
  • [7] Laplacian on a totally geodesic foliation
    Kang T.H.
    Pak H.K.
    Pak J.S.
    Journal of Geometry, 1997, 60 (1-2) : 74 - 79
  • [8] Recurrent Weil-Petersson geodesic rays with non-uniquely ergodic ending laminations
    Brock, Jeffrey
    Modami, Babak
    GEOMETRY & TOPOLOGY, 2015, 19 (06) : 3565 - 3601
  • [9] Geodesic discs in Teichmuller space
    Li, Z
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2005, 48 (08): : 1075 - 1082
  • [10] Geodesic currents and Teichmuller space
    Saric, D
    TOPOLOGY, 2005, 44 (01) : 99 - 130