A FUNDAMENTAL DICHOTOMY FOR DEFINABLY COMPLETE EXPANSIONS OF ORDERED FIELDS

被引:4
|
作者
Fornasiero, Antongiulio [1 ]
Hieronymi, Philipp [2 ]
机构
[1] Univ Naples 2, I-81100 Caserta, Italy
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Definably complete; second-order arithmetic; Lebesgue's differentiation theorem; MINIMAL OPEN CORE; REAL FIELD; DISCRETE SET; THEOREM;
D O I
10.1017/jsl.2014.10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An expansion of a definably complete field either defines a discrete subring, or the image of every definable discrete set under every definable map is nowhere dense. As an application we show a definable version of Lebesgue's differentiation theorem.
引用
收藏
页码:1091 / 1115
页数:25
相关论文
共 50 条