Counting Gallai 3-colorings of complete graphs

被引:3
|
作者
Bastos, Josefran de Oliveira [1 ]
Benevides, Fabricio Siqueira [2 ]
Mota, Guilherme Oliveira [3 ]
Sau, Ignasi [4 ]
机构
[1] Univ Fed Ceara, Engn Comp, Fortaleza, Ceara, Brazil
[2] Univ Fed Ceara, Dept Matemat, Fortaleza, Ceara, Brazil
[3] Univ Fed ABC, Ctr Matemat Comp & Cognicao, Santo Andre, Brazil
[4] Univ Montpellier, CNRS, LIRMM, Montpellier, France
基金
巴西圣保罗研究基金会;
关键词
Gallai colorings; Rainbow triangles; Complete graphs; Counting; EDGE-COLORINGS; NUMBER; SETS;
D O I
10.1016/j.disc.2019.05.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge coloring of the n-vertex complete graph K-n is a Gallai coloring if it does not contain any rainbow triangle, that is, a triangle whose edges are colored with three distinct colors. We prove that the number of Gallai colorings of K-n with at most three colors is at most 7(n + 1)2((n2)), which improves the best known upper bound of 3/2(n - 1)! . 2((n-12)) in Benevides et al. (2017). (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:2618 / 2631
页数:14
相关论文
共 50 条
  • [1] Exact algorithms for counting 3-colorings of graphs
    Zhu, Enqiang
    Wu, Pu
    Shao, Zehui
    [J]. Discrete Applied Mathematics, 2022, 322 : 74 - 93
  • [2] Exact algorithms for counting 3-colorings of graphs
    Zhu, Enqiang
    Wu, Pu
    Shao, Zehui
    [J]. DISCRETE APPLIED MATHEMATICS, 2022, 322 : 74 - 93
  • [3] On 3-colorings of plane graphs
    Xu B.-G.
    [J]. Acta Mathematicae Applicatae Sinica, 2004, 20 (4) : 597 - 604
  • [4] Gallai colorings of non-complete graphs
    Gyarfas, Andras
    Sarkozy, Gabor N.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (05) : 977 - 980
  • [5] ON 3-COLORINGS OF DIRECT PRODUCTS OF GRAPHS
    Spacapan, Simon
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) : 391 - 413
  • [6] The number of Gallai k-colorings of complete graphs
    Bastos, Josefran de Oliveira
    Benevides, Fabricio Siqueira
    Han, Jie
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 1 - 13
  • [7] Perfect 3-colorings of cubic graphs of order 8
    Alaeiyan, M.
    Mehrabani, A.
    [J]. ARMENIAN JOURNAL OF MATHEMATICS, 2018, 10 (02): : 1 - 11
  • [8] Recognizing 3-colorings cycle-patterns on graphs
    De Ita Luna, Guillermo
    Castillo, Javier A.
    [J]. PATTERN RECOGNITION LETTERS, 2013, 34 (04) : 433 - 438
  • [9] ON 3-COLORINGS OF BIPARTITE P-THRESHOLD GRAPHS
    TOMESCU, I
    [J]. JOURNAL OF GRAPH THEORY, 1987, 11 (03) : 327 - 338
  • [10] Many 3-colorings of triangle-free planar graphs
    Thomassen, Carsten
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2007, 97 (03) : 334 - 349