Extreme point characterization of constrained nonstationary infinite-horizon Markov decision processes with finite state space

被引:1
|
作者
Lee, Ilbin [1 ]
Epelman, Marina A. [1 ]
Romeijn, H. Edwin [1 ]
Smith, Robert L. [1 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Extreme point; Markov decision process; Constrained optimization; Countably infinite linear program; POLICIES; SYSTEM;
D O I
10.1016/j.orl.2014.03.001
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We study infinite-horizon nonstationary Markov decision processes with discounted cost criterion, finite state space, and side constraints. This problem can equivalently be formulated as a countably infinite linear program (CILP), a linear program with countably infinite number of variables and constraints. We provide a complete algebraic characterization of extreme points of the CILP formulation and illustrate the characterization for special cases. The existence of a K-randomized optimal policy for a problem with K side constraints also follows from this characterization. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:238 / 245
页数:8
相关论文
共 50 条