Matrix methods for the up and down Steenrod squares

被引:0
|
作者
Azizi, Samira [1 ]
Janfada, Ali S. [1 ]
机构
[1] Urmia Univ, Dept Math, Orumiyeh 5756151818, Iran
关键词
Steenrod algebra; down Steenrod squares; divided power algebra;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(n) be the polynomial algebra which is a graded left module over the Steenrod algebra. The divided power algebra DPd(n) is defined as the Hopf dual of Pd(n). The dual of the Steenrod square Sqk is the linear map Sqk : DPd+k(n) -> DPd(n), called the down Steenrod square, defined by Sqk(u) = v for u is an element of DPd+k(n), where v(f) = (Sqk(u))(f) = u(Sqk(f )) for f is an element of Pd(n). In this article we consider the down Steenrod squares and establish some results about. Further, we show that there is some periodic calculation on the down Steenrod squares hanging on the limited leading period. Finally, using this fact, we exhibit a matrix method for manipulating the down Steenrod squares.
引用
收藏
页码:310 / 324
页数:15
相关论文
共 50 条
  • [1] Matrix methods for the up and down Steenrod squares
    Azizi, Samira
    Janfada, Ali S.
    Italian Journal of Pure and Applied Mathematics, 2022, 48 : 310 - 324
  • [2] Matrix methods for the up and down Steenrod squares
    Azizi, Samira
    Janfada, Ali S.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (48): : 310 - 324
  • [3] STEENROD SQUARES IN COTOR
    UEHARA, H
    ALHASHIM.B
    BRENNEMA.FS
    HERZ, G
    MANUSCRIPTA MATHEMATICA, 1974, 13 (03) : 275 - 296
  • [4] DECOMPOSITIONS OF STEENROD SQUARES
    MICHELSOHN, ML
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 1982, 54 (01): : 9 - 17
  • [5] STEENROD SQUARES OF POLYNOMIALS
    WOOD, RMW
    ADVANCES IN HOMOTOPY THEORY: PROCEEDINGS OF A CONFERENCE IN HONOUR OF THE 60TH BIRTHDAY OF I M JAMES, 1989, 139 : 173 - 177
  • [6] Computation of Cubical Steenrod Squares
    Krcal, Marek
    Pilarczyk, Pawel
    COMPUTATIONAL TOPOLOGY IN IMAGE CONTEXT, CTIC 2016, 2016, 9667 : 140 - 151
  • [7] ON SYMMETRIC PRODUCTS AND THE STEENROD SQUARES
    BOTT, R
    ANNALS OF MATHEMATICS, 1953, 57 (03) : 579 - 590
  • [8] Steenrod squares on conjugation spaces
    Franz, M
    Puppe, V
    COMPTES RENDUS MATHEMATIQUE, 2006, 342 (03) : 187 - 190
  • [9] PSEUDO-ROTATIONS AND STEENROD SQUARES
    Shelukhin, Egor
    JOURNAL OF MODERN DYNAMICS, 2020, 16 : 289 - 304
  • [10] Higher Steenrod squares for Khovanov homology
    Cantero Moran, Federico
    ADVANCES IN MATHEMATICS, 2020, 369