Algorithmic properties of first-order modal logics of finite Kripke frames in restricted languages

被引:11
|
作者
Rybakov, Mikhail [1 ,2 ,3 ]
Shkatov, Dmitry [4 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
[2] Natl Res Univ, Higher Sch Econ, Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 101000, Russia
[3] Tver State Univ, Tver 170100, Russia
[4] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, Wits, South Africa
基金
俄罗斯基础研究基金会;
关键词
First-order modal logic; predicate modal logic; finite Kripke frames; restricted languages; undecidability; recursive enumerability; DECIDABLE FRAGMENTS; UNDECIDABILITY; COMPLEXITY;
D O I
10.1093/logcom/exaa041
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the effect of restricting the number of individual variables, as well as the number and arity of predicate letters, in languages of first-order predicate modal logics of finite Kripke frames on the logics' algorithmic properties. A finite frame is a frame with a finite set of possible worlds. The languages we consider have no constants, function symbols or the equality symbol. We show that most predicate modal logics of natural classes of finite Kripke frames are not recursively enumerable-more precisely, Pi(0)(1)-hard-in languages with three individual variables and a single monadic predicate letter. This applies to the logics of finite frames of the predicate extensions of the sublogics of propositional modal logics GL, Grz and KTB-among them, K, T, D, KB, K4 and S4.
引用
收藏
页码:1305 / 1329
页数:25
相关论文
共 50 条