Nucleate boiling heat transfer coefficients of HF01234yf on various enhanced surfaces

被引:16
|
作者
Lee, Yohan [1 ]
Kang, Dong-Gyu [1 ]
Kim, Joo-Hyung [1 ]
Jung, Dongsoo [1 ]
机构
[1] Inha Univ, Dept Mech Engn, Inchon 402751, South Korea
关键词
Nucleate boiling; Heat transfer coefficient; Alternative refrigerant; Enhanced surfaces; Evaporators; HFO1234yf; REFRIGERANTS; TUBE;
D O I
10.1016/j.ijrefrig.2013.09.014
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, nucleate boiling heat transfer coefficients (HTCs) of HFO1234yf HFC134a are measured on a flat plain, Turbo-B, Turbo-C, and Thermoexcel-E surfaces. All data are taken at the liquid pool temperature of 7 degrees C on small flat horizontal square copper plates (9.53 mm x 9.53 mm) at heat fluxes from 10 kW M-2 to 200 kW M-2 with an interval of 10 kW m(-2). Test results show that nucleate boiling HTCs of HFO1234yf on all four surfaces are similar to those of HFC134a at all heat fluxes tested in this study. At heat fluxes below 150 kW m(-2), Thermoexcel-E surface shows the highest heat transfer performance and hence is the best surface for the manufacture of the evaporators in refrigeration and air-conditioning equipment. On the other hand, at high heat fluxes above 150 kW m(-2), Turbo-B and Turbo-C show better heat transfer performance than Thermoexcel-E and hence are good for electronic cooling applications. Overall, HFO1234yf is a good long term candidate with excellent environmental properties to replace successfully HFC134a from the view point of pool boiling heat transfer. Hence HFO1234yf can be readily applied to the conventional evaporators designed for HFC134a. (C) 2013 Elsevier Ltd and IIR. All rights reserved.
引用
收藏
页码:198 / 205
页数:8
相关论文
共 50 条
  • [1] Nucleate boiling heat transfer coefficients of flammable refrigerants on various enhanced tubes
    Jung, D
    Lee, H
    Bae, D
    Ha, J
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2005, 28 (03): : 451 - 455
  • [2] Nucleate boiling heat transfer coefficients of R1234yf on plain and low fin surfaces
    Park, Ki-Jung
    Jung, Dongsoo
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2010, 33 (03): : 553 - 557
  • [3] Vaporisation of the low GWP refrigerant HF01234yf inside a brazed plate heat exchanger
    Longo, Giovanni A.
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (04): : 952 - 961
  • [4] Nucleate boiling heat transfer coefficients of flammable refrigerants
    Jung, D
    Lee, H
    Bae, D
    Oho, S
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2004, 27 (04): : 409 - 414
  • [5] Nucleate boiling heat transfer coefficients of pure halogenated refrigerants
    Jung, D
    Kim, Y
    Ko, Y
    Song, KH
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2003, 26 (02): : 240 - 248
  • [6] Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer
    Patankar, Neelesh A.
    [J]. SOFT MATTER, 2010, 6 (08) : 1613 - 1620
  • [7] Enhancement of nucleate boiling heat transfer using structured surfaces
    Nirgude, Vishal V.
    Sahu, Santosh K.
    [J]. CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 122 : 222 - 234
  • [8] Molecular dynamics study on enhanced nucleate boiling heat transfer on nanostructured surfaces with rectangular cavities
    Zhou, Wenbin
    Han, Dongmei
    Ma, Hualin
    Hu, Yanke
    Xia, Guodong
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 191
  • [9] Enhanced heat transfer correlation for nucleate boiling of fluid mixtures
    Arnautovic, Zlatan
    Welzl, Matthias
    Heberle, Florian
    Brueggemann, Dieter
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 231
  • [10] Experimental study of nucleate boiling heat transfer of refrigerant-oil mixture on various modified surfaces
    Li, Minxia
    Wang, Qifan
    Xu, Wenjie
    Dang, Chaobin
    Su, Dandan
    Liu, Xuetao
    Li, Jing
    Wang, Chenxu
    Yang, Chengjuan
    [J]. APPLIED THERMAL ENGINEERING, 2024, 255